1 Introduction

Let C n × n ( R n × n ) denote the set of all n×n complex (real) matrices, A=( a i j ) C n × n , N={1,2,,n}. We write A0 if a i j 0 for any i,jN. If A0, A is called a nonnegative matrix. The spectral radius of A is denoted by ρ(A).

We denote by Z n the class of all n×n real matrices, whose off-diagonal entries are nonpositive. A matrix A=( a i j ) Z n is called a nonsingular M-matrix if there exist a nonnegative matrix B and a nonnegative real number s such that A=sIB with s>ρ(B), where I is the identity matrix. M n will be used to denote the set of all n×n nonsingular M-matrices. Let us denote τ(A)=min{Re(λ):λσ(A)}, where σ(A) denotes the spectrum of A.

The Hadamard product of two matrices A=( a i j ) C n × n and B=( b i j ) C n × n is the matrix AB=( a i j b i j ) C n × n . If A,B M n , then B A 1 is also an M-matrix (see [1]).

Let A=( a i j ) be an n×n matrix with all diagonal entries being nonzero throughout. For i,j,kN, ij, denote

R i = j i | a i j | , d i = R i | a i i | ; r j i = | a j i | | a j j | k j , i | a j k | , r i = max j i { r j i } ; m j i = | a j i | + k j , i | a j k | r i | a j j | , m i = max j i { m i j } ; u j i = | a j i | + k j , i | a j k | m k i | a j j | , u i = max j i { u i j } .

In 2013, Zhou et al. [2] obtained the following result: If A=( a i j ) M n is a strictly row diagonally dominant matrix, B=( b i j ) M n and A 1 =( α i j ), then

τ ( B A 1 ) min i N { b i i m i j i | b j i | a i i } .
(1)

In 2013, Cheng et al. [3] presented the following result: If A=( a i j ) M n and A 1 =( α i j ) is a doubly stochastic matrix, then

τ ( A A 1 ) min 1 i n { a i i u i j i | a j i | 1 + j i u j i } .
(2)

In this paper, we present some new lower bounds of τ(B A 1 ) and τ(A A 1 ), which improve (1) and (2).

2 Main results

In this section, we present our main results. Firstly, we give some lemmas.

Lemma 1 [4]

Let A=( a i j ) R n × n . If A is a strictly row diagonally dominant matrix, then A 1 =( α i j ) satisfies

| α j i | d j | α i i |,j,iN,ji.

Lemma 2 Let A=( a i j ) R n × n . If A is a strictly row diagonally dominant M-matrix, then A 1 =( α i j ) satisfies

α j i w j i α i i ,j,iN,ji,

where

w j i = | a j i | + k j , i | a j k | m k i h i | a j j | , h i = max j i { | a j i | | a j j | m j i k j , i | a j k | m k i } .

Proof This proof is similar to the one of Lemma 2.2 in [3]. □

Lemma 3 If A=( a i j ) M n and A 1 =( α i j ) is a doubly stochastic matrix, then

α i i 1 1 + j i w j i ,iN,

where w j i is defined as in Lemma  2.

Proof This proof is similar to the one of Lemma 3.1 in [3]. □

Lemma 4 [4]

If A=( a i j ) R n × n is a strictly row diagonally dominant M-matrix, then, for A 1 =( α i j ),

α i i 1 a i i ,iN.

Lemma 5 [5]

If A=( a i j ) C n × n and x 1 , x 2 ,, x n are positive real numbers, then all the eigenvalues of A lie in the region

i j { z C : | z a i i | x i k i 1 x k | a k i | , i N } .

Lemma 6 [6]

If A=( a i j ) C n × n and x 1 , x 2 ,, x n are positive real numbers, then all the eigenvalues of A lie in the region

i j { z C : | z a i i | | z a j j | ( x i k i 1 x k | a k i | ) ( x j k j 1 x k | a k j | ) , i , j N } .

Theorem 1 If A=( a i j ), B=( b i j ) M n and A 1 =( α i j ), then

τ ( B A 1 ) min 1 i n { b i i w i j i | b j i | a i i } ,
(3)

where w i = max j i { w i j } and w i j is defined as in Lemma  2.

Proof It is evident that the result holds with equality for n=1.

We next assume that n2.

Since A is an M-matrix, there exists a positive diagonal matrix D such that D 1 AD is a strictly row diagonally dominant M-matrix, and

τ ( B A 1 ) =τ ( D 1 ( B A 1 ) D ) =τ ( B ( D 1 A D ) 1 ) .

Therefore, for convenience and without loss of generality, we assume that A is a strictly row diagonally dominant matrix.

(i) First, we assume that A and B are irreducible matrices. Then, for any iN, we have 0< w i <1. Since τ(B A 1 ) is an eigenvalue of B A 1 , then by Lemma 2 and Lemma 5, there exists an i such that

| τ ( B A 1 ) b i i α i i | w i j i 1 w j | b j i α j i | w i j i 1 w j | b j i | w j i | α i i | w i j i 1 w j | b j i | w j | α i i | = w i | α i i | j i | b j i | .

By Lemma 4, the above inequality and 0τ(B A 1 ) b i i α i i , for any iN, we obtain

| τ ( B A 1 ) | b i i α i i w i | α i i | j i | b j i | b i i w i j i | b j i | a i i min 1 i n { b i i w i j i | b j i | a i i } .

(ii) Now, assume that one of A and B is reducible. It is well known that a matrix in Z n is a nonsingular M-matrix if and only if all its leading principal minors are positive (see [7]). If we denote by T=( t i j ) the n×n permutation matrix with t 12 = t 23 == t n 1 , n = t n 1 =1, the remaining t i j zero, then both AϵT and BϵT are irreducible nonsingular M-matrices for any chosen positive real number ϵ sufficiently small such that all the leading principal minors of both AϵT and BϵT are positive. Now, we substitute AϵT and BϵT for A and B, respectively, in the previous case, and then letting ϵ0, the result follows by continuity. □

From Lemma 3 and Theorem 1, we can easily obtain the following corollaries.

Corollary 1 If A=( a i j ),B=( b i j ) M n and A 1 =( α i j ) is a doubly stochastic matrix, then

τ ( B A 1 ) min 1 i n { b i i w i j i | b j i | 1 + j i w j i } .

Corollary 2 If A=( a i j ) M n and A 1 =( α i j ) is a doubly stochastic matrix, then

τ ( A A 1 ) min 1 i n { a i i w i j i | a j i | 1 + j i w j i } .
(4)

Remark 1 We next give a simple comparison between (3) and (1), (4) and (2), respectively. Since m j i h i r i , 0 h i 1, j,iN, ji, then w j i m j i , w i m i and w j i u j i , w i u i for any j,iN, ji. Therefore,

τ ( B A 1 ) min 1 i n { b i i w i j i | b j i | a i i } min 1 i n { b i i m i j i | b j i | a i i } , τ ( A A 1 ) min 1 i n { a i i w i j i | a j i | 1 + j i w j i } min 1 i n { a i i u i j i | a j i | 1 + j i u j i } .

So, the bound in (3) is bigger than the bound in (1) and the bound in (4) is bigger than the bound in (2).

Theorem 2 If A=( a i j ),B=( b i j ) M n and A 1 =( α i j ), then

τ ( B A 1 ) min i j 1 2 { α i i b i i + α j j b j j [ ( α i i b i i α j j b j j ) 2 + 4 ( w i k i | b k i | α i i ) ( w j k j | b k j | α j j ) ] 1 2 } ,

where w i (iN) is defined as in Theorem  1.

Proof It is evident that the result holds with equality for n=1.

We next assume that n2. For convenience and without loss of generality, we assume that A is a strictly row diagonally dominant matrix.

(i)First, we assume that A and B are irreducible matrices. Let R j σ = k j | a j k | m k i h i , j,iN, ji. Then, for any j,iN, ji, we have

R j σ = k j | a j k | m k i h i | a j i |+ k j , i | a j k | m k i h i R j < a j j .

Therefore, there exists a real number z j i (0 z j i 1) such that

| a j i |+ k j , i | a j k | m k i h i = z j i R j +(1 z j i ) R j σ ,j,iN,ji.

Hence,

w j i = z j i R j + ( 1 z j i ) R j σ a j j ,jN.

Let z j = max i j z j i . Obviously, 0< z j 1 (if z j =0, then A is reducible, which is a contradiction). Let

w j = max i j { w j i }= z j R j + ( 1 z j ) R j σ a j j ,jN.

Since A is irreducible, then R j >0, R j σ 0, and 0< w j <1. Let τ(B A 1 )=λ. By Lemma 6, there exist i 0 , j 0 N, i 0 j 0 such that

|λ α i 0 i 0 b i 0 i 0 ||λ α j 0 j 0 b j 0 j 0 | ( w i 0 k i 0 1 w k | α k i 0 b k i 0 | ) ( w j 0 k j 0 1 w k | α k j 0 b k j 0 | ) .

And by Lemma 2, we have

( w i 0 k i 0 1 w k | α k i 0 b k i 0 | ) ( w j 0 k j 0 1 w k | α k j 0 b k j 0 | ) ( w i 0 k i 0 | b k i 0 | α i 0 i 0 ) ( w j 0 k j 0 | b k j 0 | α j 0 j 0 ) .

Therefore,

|λ α i 0 i 0 b i 0 i 0 ||λ α j 0 j 0 b j 0 j 0 | ( w i 0 k i 0 | b k i 0 | α i 0 i 0 ) ( w j 0 k j 0 | b k j 0 | α j 0 j 0 ) .

Furthermore, we obtain

λ 1 2 { α i 0 i 0 b i 0 i 0 + α j 0 j 0 b j 0 j 0 [ ( α i 0 i 0 b i 0 i 0 α j 0 j 0 b j 0 j 0 ) 2 + 4 ( w i 0 k i 0 | b k i 0 | α i 0 i 0 ) ( w j 0 k j 0 | b k j 0 | α j 0 j 0 ) ] 1 2 } ,

that is,

τ ( B A 1 ) 1 2 { α i 0 i 0 b i 0 i 0 + α j 0 j 0 b j 0 j 0 [ ( α i 0 i 0 b i 0 i 0 α j 0 j 0 b j 0 j 0 ) 2 + 4 ( w i 0 k i 0 | b k i 0 | α i 0 i 0 ) ( w j 0 k j 0 | b k j 0 | α j 0 j 0 ) ] 1 2 } min i j 1 2 { α i i b i i + α j j b j j [ ( α i i b i i α j j b j j ) 2 + 4 ( w i k i | b k i | α i i ) ( w j k j | b k j | α j j ) ] 1 2 } .

(ii) Now, assume that one of A and B is reducible. We substitute AϵT and BϵT for A and B, respectively, in the previous case, and then letting ϵ0, the result follows by continuity. □

Corollary 3 If A=( a i j ) M n and A 1 =( α i j ), then

τ ( A A 1 ) min i j 1 2 { α i i a i i + α j j a j j [ ( α i i a i i α j j a j j ) 2 + 4 ( w i k i | a k i | α i i ) ( w j k j | a k j | α j j ) ] 1 2 } .

Example 1 Let

A = ( 39 16 2 3 2 5 2 3 5 0 26 44 2 4 2 1 0 2 3 3 1 9 29 3 4 0 5 4 1 1 2 3 10 36 12 0 5 1 2 0 0 3 1 9 44 16 3 4 4 3 3 4 3 4 12 48 18 1 0 2 2 1 4 3 4 16 45 9 4 1 1 2 2 2 3 1 5 38 20 1 2 1 0 3 4 5 2 10 47 19 1 4 4 4 0 3 4 3 7 31 ) , B = ( 90 3 2 7 4 7 6 3 9 3 4 100 5 4 8 7 1 9 8 8 5 9 62 4 7 9 9 1 4 8 8 8 10 99 0 6 8 9 3 6 3 8 10 6 62 3 6 7 5 1 2 3 5 10 6 55 5 1 3 10 8 5 8 8 3 3 52 6 1 4 4 5 8 4 1 1 6 57 7 7 2 1 6 10 2 6 5 9 86 5 5 7 3 9 5 7 9 5 9 72 ) .

It is easily proved that A and B are nonsingular M-matrices and A is a doubly stochastic matrix.

(i) If we apply Theorem 4.8 of [2], we have

τ ( B A 1 ) min 1 i n { b i i m i j i | b j i | a i i } =0.0027.

If we apply Theorem 2.4 of [8], we have

τ ( B A 1 ) ( 1 ρ ( J A ) ρ ( J B ) ) min 1 i n a i i b i i =0.3485.

But, if we apply Theorem 1, we have

τ ( B A 1 ) min 1 i n { b i i w i j i | b j i | a i i } =0.0435.

If we apply Corollary 1, we have

τ ( B A 1 ) min 1 i n { b i i w i j i | b j i | 1 + j i w j i } =0.2172.

If we apply Theorem 2, we have

τ ( B A 1 ) min i j 1 2 { α i i b i i + α j j b j j [ ( α i i b i i α j j b j j ) 2 + 4 ( w i k i | b k i | α i i ) ( w j k j | b k j | α j j ) ] 1 2 } = 0.7212 .
  1. (ii)

    If we apply Theorem 3.2 of [3], we get

    τ ( A A 1 ) min 1 i n { a i i u i j i | a j i | 1 + j i u j i } =0.3269.

But, if we apply Corollary 2, we get

τ ( A A 1 ) min 1 i n { a i i w i j i | a j i | 1 + j i w j i } =0.3605.

If we apply Corollary 3, we get

τ ( A A 1 ) min i j 1 2 { α i i a i i + α j j a j j [ ( α i i a i i α j j a j j ) 2 + 4 ( w i k i | b k i | α i i ) ( w j k j | b k j | α j j ) ] 1 2 } = 0.4072 .