1 Introduction

The concept of variational inequalities plays an important role in various kinds of problems in pure and applied sciences (see, for example, [111]). Moreover, the rapid development and the prolific growth of the theory of variational inequalities have been made by many researchers.

In a CAT(0) space, Saejung [12] studied the convergence theorems of the following Halpern iterations for a nonexpansive mapping T. Let u be fixed and x t C be the unique fixed point of the contraction xtu(1t)Tx; i.e.,

x t =tu(1t)T x t ,
(1.1)

where t[0,1] and x 0 ,uC are arbitrarily chosen and

x n + 1 = α n u(1 α n )T x n ,n0,
(1.2)

where α n (0,1). It is proved that { x t } converges strongly as t0 to x ˜ F(T) such that x ˜ = P F ( T ) u, and { x n } converges strongly as n to x ˜ F(T) under certain appropriate conditions on α n , where P C x is a metric projection from X onto C.

In 2012, Shi and Chen [13] studied the convergence theorems of the following Moudafi viscosity iterations for a nonexpansive mapping T: For a contraction f on C and t(0,1), let x t C be the unique fixed point of the contraction xtf(x)(1t)Tx; i.e.,

x t =tf( x t )(1t)T x t ,
(1.3)

and x 0 C is arbitrarily chosen and

x n + 1 = α n f( x n )(1 α n )T x n ,n0,
(1.4)

where { α n }(0,1). They proved that { x t } defined by (1.3) converges strongly as t0 to x ˜ F(T) such that x ˜ = P F ( T ) f( x ˜ ) in the framework of a CAT(0) space satisfying the property , i.e., if for x,u, y 1 , y 2 X,

d(x, P [ x , y 1 ] u)d(x, y 1 )d(x, P [ x , y 2 ] u)d(x, y 2 )+d(x,u)d( y 1 , y 2 ).

Furthermore, they also obtained that { x n } defined by (1.4) converges strongly as n to x ˜ F(T) under certain appropriate conditions imposed on { α n }.

By using the concept of quasilinearization, which was introduced by Berg and Nikolaev [14], Wangkeeree and Preechasilp [15] studied the strong convergence theorems of iterative schemes (1.3) and (1.4) in CAT(0) spaces without the property . They proved that iterative schemes (1.3) and (1.4) converge strongly to x ˜ such that x ˜ = P F ( T ) f( x ˜ ), which is the unique solution of the variational inequality (VIP)

x ˜ f ( x ˜ ) , x x ˜ 0,xF(T).
(1.5)

In this paper, we are interested in the following so-called hierarchical optimization problems (HOP). More precisely, let f,g:CC be two contractions with coefficient α(0,1), and let T 1 , T 2 :CC be two nonexpansive mappings such that F( T 1 ) and F( T 2 ) are nonempty. The class of hierarchical optimization problems (HOP) consists in finding ( x ˜ , y ˜ )F( T 1 )×F( T 2 ) such that the following inequalities hold:

{ x ˜ f ( y ˜ ) , x x ˜ 0 , x F ( T 1 ) , y ˜ g ( x ˜ ) , y y ˜ 0 , y F ( T 2 ) .
(1.6)

For this purpose, we introduce the following iterative schemes:

{ x t = t f ( T 2 y t ) ( 1 t ) T 1 x t , y t = t g ( T 1 x t ) ( 1 t ) T 2 y t ,
(1.7)

where t(0,1), and

{ x 0 , y 0 C , x n + 1 = α n f ( T 2 y n ) ( 1 α n ) T 1 x n , y n + 1 = α n g ( T 1 x n ) ( 1 α n ) T 2 x n , n 0 ,
(1.8)

where { α n }(0,1) satisfies

(H1) α n 0,

(H2) n = 0 =,

(H3) either n = 0 | α n + 1 α n |< or lim n α n + 1 α n =1.

We prove that iterative schemes (1.7) and (1.8) converge strongly to ( x ˜ , y ˜ )F( T 1 )×F( T 2 ) such that x ˜ = P F ( T 1 ) f( y ˜ ) and y ˜ = P F ( T 2 ) g( x ˜ ), which is the unique solution of (1.6).

2 Preliminaries

Let (X,d) be a metric space. A geodesic path joining xX to yY (or, more briefly, a geodesic from x to y) is a map c:[0,l]X such that c(0)=x, c(l)=y, and d(c(t),c( t ))=|t t | for all t, t [0,l]. In particular, c is an isometry and d(x,y)=l. The image of c is called a geodesic segment joining x and y. When it is unique, this geodesic segment is denoted by [x,y]. The space (X,d) is said to be a geodesic space if every two points of X are joined by a geodesic, and X is said to be uniquely geodesic if there is exactly one geodesic joining x and y for each x,yX. A subset YX is said to be convex if Y includes every geodesic segment joining any two of its points.

A geodesic triangle ( x 1 , x 2 , x 3 ) in a geodesic metric space (X,d) consists of three points x 1 , x 2 , and x 3 in X (the vertices of △) and a geodesic segment between each pair of vertices (the edges of △). A comparison triangle for the geodesic triangle ( x 1 , x 2 , x 3 ) in (X,d) is a triangle ¯ ( x 1 , x 2 , x 3 ):=( x ¯ 1 , x ¯ 2 , x ¯ 3 ) in the Euclidean plane E 2 such that d E 2 ( x ¯ i , x ¯ j )=d( x i , x j ) for i,j1,2,3.

A geodesic space is said to be a CAT(0) space if all geodesic triangles satisfy the following comparison axiom.

CAT(0): Let △ be a geodesic triangle in X, and let ¯ be a comparison triangle for △. Then △ is said to satisfy the CAT(0) inequality if for all x,y and all comparison points x ¯ , y ¯ ¯ ,

d(x,y) d E 2 ( x ¯ , y ¯ ).

Let x,yX by [[16], Lemma 2.1(iv)] for each t[0,1], then there exists a unique point z[x,y] such that

d(x,z)=td(x,y),d(y,z)=(1t)d(x,y).
(2.1)

From now on, we will use the notation (1t)xty for the unique point z satisfying (2.1).

We now collect some elementary facts about CAT(0) spaces which will be used in the proofs of our main results.

Lemma 2.1 Let X be a CAT(0) space. Then

  1. (i)

    (see [[16], Lemma  2.4]) for each x,y,zX and t[0,1], one has

    d ( ( 1 t ) x t y , z ) (1t)d(x,z)+td(y,z);
    (2.2)
  2. (ii)

    (see [17]) for each x,y,zX and t,s[0,1], one has

    d ( ( 1 t ) x t y , ( 1 s ) x s y ) |ts|d(x,y);
    (2.3)
  3. (iii)

    (see [18]) for each x,y,z,wX and t[0,1], one has

    d ( ( 1 t ) x t y , ( 1 t ) z t w ) (1t)d(x,z)+td(y,w);
    (2.4)
  4. (iv)

    (see [19]) for each x,y,zX and t[0,1], one has

    d ( ( 1 t ) z t x , ( 1 t ) z t y ) td(x,y);
    (2.5)
  5. (v)

    (see [16]) for each x,y,zX and t[0,1], one has

    d 2 ( ( 1 t ) x t y , z ) (1t) d 2 (x,z)+t d 2 (y,z)t(1t) d 2 (x,y).
    (2.6)

Let C be a nonempty subset of a complete CAT(0) space X. Recall that a self-mapping T:CC is a nonexpansion on C iff d(Tx,Ty)d(x,y) for all x,yC. A point xC is called a fixed point of T if x=Tx. We denote by F(T) the set of all fixed points of T. A self-mapping f:CC is a contraction on C if there exists a constant α(0,1) such that d(fx,fy)αd(x,y). Banach’s contraction principle [20] guarantees that f has a unique fixed point when C is a nonempty closed convex subset of a complete metric space.

Fixed-point theory in CAT(0) spaces was first studied by Kirk (see [19, 21]). He showed that every nonexpansive (single-valued) mapping defined on a bounded closed convex subset of a complete CAT(0) space always has a fixed point. Since then, the fixed-point theory for single-valued and multivalued mappings in CAT(0) spaces has been rapidly developed.

Berg and Nikolaev [14] introduced the concept of quasilinearization as follows.

Let (X,d) be a metric space. Let us formally denote a pair (a,b)X×X by a b and call it a vector. Then quasilinearization is defined as a mapping ,:(X×X)×(X×X)R defined by

a b , c d = 1 2 ( d 2 ( a , d ) + d 2 ( b , c ) d 2 ( a , c ) d 2 ( b , d ) ) ,a,b,c,dX.
(2.7)

It is easily seen that a b , c d = c d , a b , a b , c d = b a , c d and a x , c d + x b , c d = a b , c d for all a,b,c,d,xX.

We say that X satisfies the Cauchy-Schwarz inequality if

a b , c d d(a,b)d(c,d)
(2.8)

for all a,b,c,dX.

It is known [[14], Corollary 3] that a geodesically connected metric space is a CAT(0) space if and only if it satisfies the Cauchy-Schwarz inequality.

Recently, Dehghan and Rooin [22] presented a characterization of a metric projection in CAT(0) spaces as follows.

Lemma 2.2 Let C be a nonempty closed and convex subset of a complete CAT(0) space X, xX and uC. Then u= P C x if and only if y u , u x 0 for all yC.

Let { x n } be a bounded sequence in a CAT(0) space X. For xX, we set

r ( x , { x n } ) = lim sup n d(x, x n ).

The asymptotic radius r({ x n }) of { x n } is given by

r ( { x n } ) =inf { r ( x , { x n } ) : x X } ,

and the asymptotic center A({ x n }) of { x n } is the set

A ( { x n } ) = { x X : r ( x , { x n } ) = r ( { x n } ) } .

It is known from Proposition 7 of [23] that for each bounded sequence { x n } in a complete CAT(0) space, A({ x n }) consists of exactly one point. A sequence { x n }X is said to △-converge to xX if A({ x n k })={x} for every subsequence { x n k } of { x n }. We use x n x to denote that { x n } △-converges to x. The uniqueness of an asymptotic center implies that the CAT(0) space X satisfies Opial’s property, i.e., for given { x n }X such that x n x, then for any given yX with yx, the following holds:

lim sup n d( x n ,x)< lim sup n d( x n ,y).

Lemma 2.3 [24]

Assume that X is a complete CAT(0) space. Then:

  1. (i)

    Every bounded sequence in X always has a △-convergent subsequence.

  2. (ii)

    If C is a closed convex subset of X and T:CX is a nonexpansive mapping, then the conditions x n x and d( x n ,T x n )0 imply xC and Tx=x.

The following lemma shows a characterization of △-convergence.

Lemma 2.4 [23]

Let X be a complete CAT(0) space, { x n } be a sequence in X, and xX. Then x n x if and only if lim sup n x x n , x y 0 for all yX.

Lemma 2.5 [23]

Let { a n } be a sequence of nonnegative real numbers satisfying the property

a n + 1 (1 α n ) a n + α n β n ,n0,

where { α n }(0,1) and { β n }R such that

  1. 1.

    n = 0 α n =;

  2. 2.

    lim sup n β n 0 or n = 0 | α n β n |<.

Then { a n } converges to zero as n.

Lemma 2.6 [15]

Let X be a complete CAT(0) space. Then,

  1. (i)

    for each u,x,yX, one has

    d 2 (x,u) d 2 (y,u)+2 x y , x u ;
    (2.9)
  2. (ii)

    for any u,vX and t[0,1], letting u t =tu(1t)v for all x,yX, we have:

  3. (a)

    u t x , u t y t u x , u t y +(1t) v x , u t y ;

  4. (b)

    u t x , u y t u x , u y +(1t) v x , u y ;

  5. (c)

    u t x , u t y t u x , u y +(1t) v x , v y .

3 Main results

Now we are ready to give our main results in this paper.

Let (X,d) be a metric space. Define a mapping d ˆ :(X×X)×(X×X) R + by

d ˆ ( ( x 1 , y 1 ) , ( x 2 , y 2 ) ) =d( x 1 , x 2 )+d( y 1 , y 2 )

for all x 1 , x 2 , y 1 , y 2 X. Then it is easy to verify that (X×X, d ˆ ) is a metric space, and (X×X, d ˆ ) is complete if and only if (X,d) is complete.

Lemma 3.1 Let C be a closed convex subset of a complete CAT(0) space. Let f,g:CC be two contractions with coefficient α(0,1), and let T 1 , T 2 :CC be two nonexpansive mappings. For any t(0,1), define another mapping G t :C×CC×C by

G t (x,y)= ( t f ( T 2 y ) ( 1 t ) T 1 x , t g ( T 1 x ) ( 1 t ) T 2 y ) .

Then G t is a contraction on C×C.

Proof For any ( x 1 , y 1 ),( x 2 , y 2 )C×C and t(0,1), we have

d ˆ ( G t ( x 1 , y 1 ) , G t ( x 2 , y 2 ) ) = d ( t f ( T 2 y 1 ) ( 1 t ) T 1 x 1 , t f ( T 2 y 2 ) ( 1 t ) T 1 x 2 ) + d ( t g ( T 1 x 1 ) ( 1 t ) T 2 y 1 , t g ( T 1 x 2 ) ( 1 t ) T 2 y 2 ) t d ( f ( T 2 y 1 ) , f ( T 2 y 2 ) ) + ( 1 t ) d ( T 1 x 1 , T 1 x 2 ) + t d ( g ( T 1 x 1 ) , g ( T 1 x 2 ) ) + ( 1 t ) d ( T 2 y 1 , T 2 y 2 ) ( 1 t ( 1 α ) ) ( d ( x 1 , x 2 ) + d ( y 1 , y 2 ) ) = ( 1 t ( 1 α ) ) d ˆ ( ( x 1 , y 1 ) , ( x 2 , y 2 ) ) .

This implies that G t is a contraction mapping. Therefore there exists a unique fixed point ( x t , y t )C×C of G t such that

{ x t = t f ( T 2 y t ) ( 1 t ) T 1 x t , y t = t g ( T 1 x t ) ( 1 t ) T 2 y t .

 □

Theorem 3.2 Let C be a closed convex subset of a complete CAT(0) space X, and let T 1 , T 2 :CC be two nonexpansive mappings such that F( T 1 ) and F( T 2 ) are nonempty. Let f, g be two contractions on C with coefficient 0<α<1. For each t(0,1], let { x t } and { y t } be given by (1.7). Then x t x ˜ and y t y ˜ as t0 such that x ˜ = P F ( T 1 ) f( y ˜ ), y ˜ = P F ( T 2 ) g( x ˜ ) which is the unique solution of HOP (1.6).

Proof We first show that { x t } and { y t } are bounded. Indeed, take (p,q)F( T 1 )×F( T 2 ) to derive that

d ( x t , p ) + d ( y t , q ) = d ( t f ( T 2 y t ) ( 1 t ) T 1 x t , p ) + d ( t g ( T 1 x t ) ( 1 t ) T 2 y t , q ) t d ( f ( T 2 y t ) , p ) + ( 1 t ) d ( T 1 x t , p ) + t d ( g ( T 1 x t ) , q ) + ( 1 t ) d ( T 2 y t , q ) t d ( f ( T 2 y t ) , f ( q ) ) + t d ( f ( q ) , p ) + ( 1 t ) d ( T 1 x t , p ) + t d ( g ( T 1 x t ) , g ( p ) ) + t d ( g ( p ) , q ) + ( 1 t ) d ( T 2 y t , q ) t α d ( y t , q ) + t d ( f ( q ) , p ) + ( 1 t ) d ( x t , p ) + t α d ( x t , p ) + t d ( g ( p ) , q ) + ( 1 t ) d ( y t , q ) .

After simplifying, we have

d( x t ,p)+d( y t ,q) 1 1 α ( d ( f ( q ) , p ) + d ( g ( p ) , q ) ) .

Hence { x t } and { y t } are bounded, so are { T 1 x t }, { T 2 y t }, {f( T 2 y t )} and {g( T 1 x t )}. Consequently,

d ( x t , T 1 x t ) + d ( y t , T 2 y t ) = d ( t f ( T 2 y t ) ( 1 t ) T 1 x t , T 1 x t ) + d ( t g ( T 1 x t ) ( 1 t ) T 2 y t , T 2 y t ) = t d ( f ( T 2 y t ) , T 2 y t ) + t d ( g ( T 1 x t ) , T 2 y t ) 0 ( as  t 0 ) .

In particular, we have

d( x t , T 1 x t )0,d( y t , T 2 y t )0(as t0).
(3.1)

Next we prove that { x t } is relatively compact as t0.

In fact, let { t n }(0,1) be any subsequence such that t n 0 as n. Put x n := x t n and y n := y t n . Now we prove that {( x n , y n )} contains a subsequence converging strongly to ( x ˜ , y ˜ ) where x ˜ = P F ( T 1 ) f( y ˜ ), y ˜ = P F ( T 2 ) g( x ˜ ) and it is a solution of HOP (1.6).

In fact, since { x n } and { y n } are both bounded, by Lemma 2.3(i), (ii) and (3.1), we may assume that x n x ˜ and y n y ˜ , and x ˜ F( T 1 ), y ˜ F( T 2 ). Hence it follows from Lemma 2.6 that

d 2 ( x n , x ˜ ) + d 2 ( y n , y ˜ ) = x n x ˜ , x n x ˜ + y n y ˜ , y n y ˜ t n f ( T 2 y n ) x ˜ , x n x ˜ + ( 1 t n ) ( T 1 x n ) x ˜ , x n x ˜ + t n g ( T 1 x n ) y ˜ , y n y ˜ + ( 1 t n ) ( T 2 y n ) y ˜ , y n y ˜ t n f ( T 2 y n ) x ˜ , x n x ˜ + ( 1 t n ) d ( T 1 x n , x ˜ ) d ( x n , x ˜ ) + t n g ( T 1 x n ) y ˜ , y n y ˜ + ( 1 t n ) d ( T 2 y n , y ˜ ) d ( y n , y ˜ ) t n f ( T 2 y n ) x ˜ , x n x ˜ + ( 1 t n ) d 2 ( x n , x ˜ ) + t n g ( T 1 x n ) y ˜ , y n y ˜ + ( 1 t n ) d 2 ( y n , y ˜ ) .
(3.2)

After simplifying, we have

d 2 ( x n , x ˜ ) + d 2 ( y n , y ˜ ) f ( T 2 y n ) x ˜ , x n x ˜ + g ( T 1 x n ) y ˜ , y n y ˜ = f ( T 2 y n ) f ( y ˜ ) , x n x ˜ + f ( y ˜ ) x ˜ , x n x ˜ + g ( T 1 x n ) g ( x ˜ ) , y n y ˜ + g ( x ˜ ) y ˜ , y n y ˜ d ( f ( T 2 y n ) , f ( y ˜ ) ) d ( x n , x ˜ ) + f ( y ˜ ) x ˜ , x n x ˜ + d ( g ( T 1 x n ) , g ( x ˜ ) ) d ( y n , y ˜ ) + g ( x ˜ ) y ˜ , y n y ˜ 2 α d ( x n , x ˜ ) d ( y n , y ˜ ) + f ( y ˜ ) x ˜ , x n x ˜ + g ( x ˜ ) y ˜ , y n y ˜ α ( d 2 ( x n , x ˜ ) + d 2 ( y n , y ˜ ) ) + f ( y ˜ ) x ˜ , x n x ˜ + g ( x ˜ ) y ˜ , y n y ˜

and thus

d 2 ( x n , x ˜ )+ d 2 ( y n , y ˜ ) 1 1 α [ f ( y ˜ ) x ˜ , x n x ˜ + g ( x ˜ ) y ˜ , y n y ˜ ] .
(3.3)

Since x n x ˜ and y n y ˜ , by Lemma 2.4,

lim sup n f ( y ˜ ) x ˜ , x n x ˜ 0and lim sup n g ( x ˜ ) y ˜ , y n y ˜ 0.

Hence we have

lim sup n [ f ( y ˜ ) x ˜ , x n x ˜ + g ( x ˜ ) y ˜ , y n y ˜ ] lim sup n f ( y ˜ ) x ˜ , x n x ˜ + lim sup n g ( x ˜ ) y ˜ , y n y ˜ 0.
(3.4)

It follows from (3.3) that d 2 ( x n , x ˜ )+ d 2 ( y n , y ˜ )0. Hence x n x ˜ and y n y ˜ .

Next we show that ( x ˜ , y ˜ )F( T 1 )×F( T 2 ), which solves HOP (1.6).

Indeed, for each xF( T 1 ), yF( T 2 ), we have

d 2 ( x t , x ) = d 2 ( t f ( T 2 y t ) ( 1 t ) T 1 x t , x ) t d 2 ( f ( T 2 y t ) , x ) + ( 1 t ) d 2 ( T 1 x t , x ) t ( 1 t ) d 2 ( f ( T 2 y t ) , T 1 x t ) t d 2 ( f ( T 2 y t ) , x ) + ( 1 t ) d 2 ( x t , x ) t ( 1 t ) d 2 ( f ( T 2 y t ) , T 1 x t ) .

This implies that

d 2 ( x t ,x) d 2 ( f ( T 2 y t ) , x ) (1t) d 2 ( f ( T 2 y t ) , T 1 x t ) .

Letting t= t n 0 and taking the limit and noting that d( y t , T 2 y t )0 and d( x t , T 1 x t )0, we have

d 2 ( x ˜ ,x) d 2 ( f ( y ˜ ) , x ) d 2 ( f ( y ˜ ) , x ˜ ) .

Hence

x ˜ f ( y ˜ ) , x x ˜ = 1 2 [ x ˜ + d 2 ( f ( y ˜ ) , x ) d 2 ( f ( y ˜ ) , x ˜ ) d 2 ( x ˜ , x ) ] 0.

It is similar to proving that

y ˜ g ( x ˜ ) , y y ˜ 0.

That is, ( x ˜ , y ˜ ) solves inequality (1.6).

Finally, we show that the entire net { x t } converges to x ˜ , and { y t } converges to y ˜ . In fact, for any subsequence { s n }(0,1) such that s n 0 (as n), assume that x s n x ˆ and y s n y ˆ . By the same argument as above, we get that ( x ˆ , y ˆ )F( T 1 )×F( T 2 ) and solves inequality (1.6). Hence we have

{ x ˜ f ( y ˜ ) , x ˜ x ˆ 0 , y ˜ g ( x ˜ ) , y ˜ y ˆ 0
(3.5)

and

{ x ˆ f ( y ˆ ) , x ˆ x ˜ 0 , y ˆ g ( x ˆ ) , y ˆ y ˜ 0 .
(3.6)

Adding up (3.5) and (3.6), we get that

0 x ˜ f ( y ˜ ) , x ˜ x ˆ + y ˜ g ( x ˜ ) , y ˜ y ˆ x ˆ f ( y ˆ ) , x ˜ x ˆ y ˆ g ( x ˆ ) , y ˜ y ˆ = x ˜ f ( y ˆ ) , x ˜ x ˆ + f ( y ˆ ) f ( y ˜ ) , x ˜ x ˆ x ˆ x ˜ , x ˜ x ˆ x ˜ f ( y ˆ ) , x ˜ x ˆ + y ˜ g ( x ˆ ) , y ˜ y ˆ + g ( x ˆ ) g ( x ˜ ) , y ˜ y ˆ y ˆ y ˜ , y ˜ y ˆ y ˜ g ( x ˆ ) , y ˜ y ˆ = x ˜ x ˆ , x ˜ x ˆ + y ˜ y ˆ , y ˜ y ˆ f ( y ˜ ) f ( y ˆ ) , x ˜ x ˆ g ( x ˜ ) g ( x ˆ ) , y ˜ y ˆ d 2 ( x ˜ , x ˆ ) + d 2 ( y ˜ , y ˆ ) d ( f ( y ˜ ) , f ( y ˆ ) ) d ( x ˜ , x ˆ ) d ( g ( x ˜ ) , g ( x ˆ ) ) d ( y ˜ , y ˆ ) d 2 ( x ˜ , x ˆ ) + d 2 ( y ˜ , y ˆ ) 2 α d ( y ˜ , y ˆ ) d ( x ˜ , x ˆ ) ( 1 α ) [ d 2 ( x ˜ , x ˆ ) + d 2 ( y ˜ , y ˆ ) ] .

Since 0<α<1, we have that d 2 ( x ˜ , x ˆ )+ d 2 ( y ˜ , y ˆ )=0, and so x ˜ = x ˆ , y ˜ = y ˆ . Hence the entire net { x t } converges to x ˜ and { y t } converges to y ˜ , which ( x ˆ , y ˆ ) solves HOP (1.6). This completes the proof of Theorem 3.2. □

Theorem 3.3 Let C be a closed convex subset of a complete CAT(0) space X, and let T 1 , T 2 :CC be two nonexpansive mappings such that F( T 1 ) and F( T 2 ) are nonempty. Let f, g be two contractions on C with coefficient 0<α<1. Let { x n } and { y n } be the sequences defined by (1.8). If conditions (H1)-(H3) are satisfied, then x n x ˜ and y n y ˜ as n, where x ˜ = P F ( T 1 ) f( y ˜ ), y ˜ = P F ( T 2 ) g( x ˜ ), which solves HOP (1.6).

Proof First we show that { x n } and { y n } are bounded. Indeed, taking (p,q)F( T 1 )×F( T 2 ), it follows that

d ( x n + 1 , p ) + d ( y n + 1 , q ) = d ( α n f ( T 2 y n ) ( 1 α n ) T 1 x n , p ) + d ( α n g ( T 1 x n ) ( 1 α n ) T 2 y n , q ) α n d ( f ( T 2 y n ) , p ) + ( 1 α n ) d ( T 1 x n , p ) + α n d ( g ( T 1 x n ) , q ) + ( 1 α n ) d ( T 2 y n , q ) α n d ( f ( T 2 y n ) , f ( q ) ) + α n d ( f ( q ) , p ) + ( 1 α n ) d ( T 1 x n , p ) + α n d ( g ( T 1 x n ) , g ( p ) ) + α n d ( g ( p ) , q ) + ( 1 α n ) d ( T 2 y n , q ) α n α d ( y n , q ) + α n d ( f ( q ) , p ) + ( 1 α n ) d ( x n , p ) + α n α d ( x n , p ) + α n d ( g ( p ) , q ) + ( 1 α n ) d ( y n , q ) = ( 1 α n ( 1 α ) ) [ d ( x n , p ) + d ( y n , q ) ] + α n ( 1 α ) d ( f ( q ) , p ) + d ( g ( p ) , q ) 1 α max { d ( x n , p ) + d ( y n , q ) , d ( f ( q ) , p ) + d ( g ( p ) , q ) 1 α } .

By induction, we can prove that

d( x n ,p)+d( y n ,q)max { d ( x 0 , p ) + d ( y 0 , q ) , d ( f ( q ) , p ) + d ( g ( p ) , q ) 1 α }
(3.7)

for all nN. This implies that { x n } and { y n } are bounded, so are { T 1 x n }, { T 2 y n }, {f( T 2 y n )} and {g( T 1 x n )}.

We claim that d( x n + 1 , x n )0 and d( y n + 1 , y n )0. Indeed, we have (for some appropriate constant M>0)

d ( x n + 1 , x n ) + d ( y n + 1 , y n ) = d ( α n f ( T 2 y n ) ( 1 α n ) T 1 x n , α n 1 f ( T 2 y n 1 ) ( 1 α n 1 ) T 1 x n 1 ) + d ( α n g ( T 1 x n ) ( 1 α n ) T 1 y n , α n 1 g ( T 1 x n 1 ) ( 1 α n 1 ) T 2 y n 1 ) d ( α n f ( T 2 y n ) ( 1 α n ) T 1 x n , α n f ( T 2 y n 1 ) ( 1 α n ) T 1 x n 1 ) + d ( α n f ( T 2 y n 1 ) ( 1 α n ) T 1 x n 1 , α n 1 f ( T 2 y n 1 ) ( 1 α n 1 ) T 1 x n 1 ) + d ( α n g ( T 1 x n ) ( 1 α n ) T 2 y n , α n g ( T 1 x n 1 ) ( 1 α n ) T 2 y n 1 ) + d ( α n g ( T 1 x n 1 ) ( 1 α n ) T 2 y n 1 , α n 1 g ( T 1 x n 1 ) ( 1 α n 1 ) T 2 y n 1 ) α n d ( f ( T 2 y n ) , f ( T 2 y n 1 ) ) + ( 1 α n ) d ( T 1 x n , T 1 x n 1 ) + | α n α n 1 | d ( f ( T 2 y n 1 ) , T 1 x n 1 ) + α n d ( g ( T 1 x n ) , g ( T 1 x n 1 ) ) + ( 1 α n ) d ( T 2 y n , T 2 y n 1 ) + | α n α n 1 | d ( g ( T 1 x n 1 ) , T 2 y n 1 ) α n α d ( T 2 y n , T 2 y n 1 ) + ( 1 α n ) d ( T 1 x n , T 1 x n 1 ) + | α n α n 1 | d ( f ( T 2 y n 1 ) , T 1 x n 1 ) + α n α d ( T 1 x n , T 1 x n 1 ) + ( 1 α n ) d ( T 2 y n , T 2 y n 1 ) + | α n α n 1 | d ( g ( T 1 x n 1 ) , T 2 y n 1 ) ( 1 α n ( 1 α ) ) [ d ( x n , x n 1 ) + d ( y n , y n 1 ) ] + M | α n α n 1 | .

By conditions (H2) and (H3) and Lemma 2.5, we have

d( x n + 1 , x n )+d( y n + 1 , y n )0,
(3.8)

and thus d( x n + 1 , x n )0, d( y n + 1 , y n )0.

Consequently, by condition (H1), we have

d ( x n , T 1 x n ) + d ( y n , T 2 y n ) d ( x n , x n + 1 ) + d ( x n + 1 , T 1 x n ) + d ( y n , y n + 1 ) + d ( y n + 1 , T 2 y n ) = d ( x n , x n + 1 ) + d ( α n f ( T 2 y n ) ( 1 α n ) T 1 x n , T 1 x n ) + d ( y n , y n + 1 ) + d ( α n g ( T 1 x n ) ( 1 α n ) T 2 y n , T 2 y n ) = d ( x n , x n + 1 ) + α n d ( f ( T 2 y n ) , T 1 x n ) + d ( y n , y n + 1 ) + α n d ( g ( T 1 x n ) , T 2 y n ) 0 ( n ) .
(3.9)

This implies that

d( x n , T 1 x n )0,d( y n , T 2 y n )0(as n).
(3.10)

Let { x t } and { y t } be two nets in C such that

{ x t = t f ( T 2 y t ) ( 1 t ) T 1 x t , y t = t g ( T 1 x t ) ( 1 t ) T 2 y t .

By Theorem 3.2, we have that x t x ˜ and y t y ˜ as t0 such that x ˜ = P F ( T 1 ) f( y ˜ ), y ˜ = P F ( T 2 ) g( x ˜ ), which solves the variational inequality (1.6). Now, we claim that

lim sup n [ f ( y ˜ ) x ˜ , x n x ˜ + g ( x ˜ ) y ˜ , y n y ˜ ] 0.

From Lemma 2.5, we have

d 2 ( x t , x n ) + d 2 ( y t , y n ) = x t x n , x t x n + y t y n , y t y n t f ( T 2 y t ) x n , x t x n + ( 1 t ) T 1 ( x t ) x n , x t x n + t g ( T 1 x t ) y n , y t y n + ( 1 t ) T 2 ( y t ) y n , y t y n = t f ( T 2 y t ) f ( y ˜ ) , x t x n + t f ( y ˜ ) x ˜ , x t x n + t x ˜ x t , x t x n + t x t x n , x t x n + t g ( T 1 x t ) g ( x ˜ ) , y t y n + t g ( x ˜ ) y ˜ , y t y n + t y ˜ y t , y t y n + t y t y n , y t y n + ( 1 t ) T 1 ( x t ) T 1 ( x n ) , x t x n + ( 1 t ) T 1 ( x n ) x n , x t x n + ( 1 t ) T 2 ( y t ) T 2 ( y n ) , y t y n + ( 1 t ) T 2 ( y n ) y n , y t y n t α d ( y t , y ˜ ) d ( x t , x n ) + t f ( y ˜ ) x ˜ , x t x n + t d ( x ˜ , x t ) d ( x t , x n ) + t d 2 ( x t , x n ) + t α d ( x t , x ˜ ) d ( y t , y n ) + t g ( x ˜ ) y ˜ , y t y n + t d ( y ˜ , y t ) d ( y t , y n ) + t d 2 ( y t , y n ) + ( 1 t ) d 2 ( x t , x n ) + ( 1 t ) d ( T 1 ( x n ) , x n ) d ( x t x n ) + ( 1 t ) d 2 ( y t , y n ) + ( 1 t ) d ( T 2 ( y n ) , y n ) d ( y t y n ) t α d ( y t , y ˜ ) M + t f ( y ˜ ) x ˜ , x t x n + t d ( x ˜ , x t ) M + t d 2 ( x t , x n ) + t α d ( x t , x ˜ ) M + t g ( x ˜ ) y ˜ , y t y n + t d ( y ˜ , y t ) M + t d 2 ( y t , y n ) + ( 1 t ) d 2 ( x t , x n ) + ( 1 t ) d ( T 1 ( x n ) , x n ) M + ( 1 t ) d 2 ( y t , y n ) + ( 1 t ) d ( T 2 ( y n ) , y n ) M [ d 2 ( x t , x n ) + d 2 ( y t , y n ) ] + t M α [ d ( x t , x ˜ ) + d ( y t , y ˜ ) ] + t M [ d ( x ˜ , x t ) + d ( y ˜ , y t ) ] + M [ d ( T 1 ( x n ) , x n ) + d ( T 2 ( y n ) , y n ) ] + t [ f ( y ˜ ) x ˜ , x t x n + g ( x ˜ ) y ˜ , y t y n ] ,

where Mmax{sup{d( x t , x n ):t(0,1),n0},sup{d( y t , y n ):t(0,1),n0}}. Simplifying this, we have

f ( y ˜ ) x ˜ , x n x t + g ( x ˜ ) y ˜ , y n y t M ( 1 + α ) [ d ( x t , x ˜ ) + d ( y t , y ˜ ) ] + M t [ d ( T 1 ( x n ) , x n ) + d ( T 2 ( y n ) , y n ) ] .
(3.11)

Taking the limit as n first and then letting t0 on both sides of (3.11), we have

lim sup t 0 lim sup n [ f ( y ˜ ) x ˜ , x n x t + g ( x ˜ ) y ˜ , y n y t ] 0.

Since x t x ˜ and y t y ˜ as t0, by the continuity of a metric d, it follows that

lim sup t 0 [ f ( y ˜ ) x ˜ , x n x t + g ( x ˜ ) y ˜ , y n y t ] = f ( y ˜ ) x ˜ , x n x ˜ + g ( x ˜ ) y ˜ , y n y ˜ .

This implies that, for any ϵ>0, there exists δ>0 such that for any t(0,δ), we have

f ( y ˜ ) x ˜ , x n x ˜ + g ( x ˜ ) y ˜ , y n y ˜ f ( y ˜ ) x ˜ , x n x t + g ( x ˜ ) y ˜ , y n y t +ϵ.
(3.12)

First letting t0 and taking limit, and then letting n and taking the upper limit on (3.12), we obtain

lim sup n [ f ( y ˜ ) x ˜ , x n x ˜ + g ( x ˜ ) y ˜ , y n y ˜ ] ϵ.

Since ϵ>0 is arbitrary, we have

lim sup n [ f ( y ˜ ) x ˜ , x n x ˜ + g ( x ˜ ) y ˜ , y n y ˜ ] 0.

Finally, we prove that x n x ˜ and y n y ˜ as n. Indeed, taking u n = α n x ˜ (1 α n ) T 1 x n , v n = α n y ˜ (1 α n ) T 2 y n for any nN, it follows from Lemma 2.6(i) that

d 2 ( x n + 1 , x ˜ ) + d 2 ( y n + 1 , y ˜ ) d 2 ( u n , x ˜ ) + d 2 ( v n , y ˜ ) + 2 x n + 1 u n , x n + 1 x ˜ + 2 y n + 1 v n , y n + 1 y ˜ ( 1 α n ) 2 [ d 2 ( x n , x ˜ ) + d 2 ( y n , y ˜ ) ] + 2 [ α n f ( T 2 y n ) u n , x n + 1 x ˜ + ( 1 α n ) T 1 ( x n ) u n , x n + 1 x ˜ ] + 2 [ α n g ( T 1 x n ) v n , y n + 1 y ˜ + ( 1 α n ) T 2 ( y n ) v n , y n + 1 y ˜ ] ( 1 α n ) 2 [ d 2 ( x n , x ˜ ) + d 2 ( y n , y ˜ ) ] + 2 [ α n 2 f ( T 2 y n ) x ˜ , x n + 1 x ˜ + α n ( 1 α n ) f ( T 2 y n ) T 1 ( x n ) , x n + 1 x ˜ + ( 1 α n ) α n T 1 ( x n ) x ˜ , x n + 1 x ˜ + ( 1 α n ) 2 T 1 ( x n ) T 1 ( x n ) , x n + 1 x ˜ ] + 2 [ α n 2 g ( T 1 x n ) y ˜ , y n + 1 y ˜ + α n ( 1 α n ) g ( T 1 x n ) T 2 ( y n ) , y n + 1 y ˜ + ( 1 α n ) 2 T 2 ( y n ) y ˜ , y n + 1 y ˜ + α n ( 1 α n ) T 2 ( y n ) T 2 ( y n ) , y n + 1 y ˜ ] = ( 1 α n ) 2 [ d 2 ( x n , x ˜ ) + d 2 ( y n , y ˜ ) ] + 2 α n [ f ( T 2 y n ) x ˜ , x n + 1 x ˜ + g ( T 1 x n ) y ˜ , y n + 1 y ˜ ] = ( 1 α n ) 2 [ d 2 ( x n , x ˜ ) + d 2 ( y n , y ˜ ) ] + 2 α n [ f ( T 2 y n ) f ( y ˜ ) , x n + 1 x ˜ + f ( y ˜ ) x ˜ , x n + 1 x ˜ + g ( T 1 x n ) g ( x ˜ ) , y n + 1 y ˜ + g ( x ˜ ) y ˜ , y n + 1 y ˜ ] ( 1 α n ) 2 [ d 2 ( x n , x ˜ ) + d 2 ( y n , y ˜ ) ] + 2 α n α [ d ( y n , y ˜ ) d ( x n + 1 , x ˜ ) + d ( x n , x ˜ ) d ( y n + 1 , y ˜ ) ] + 2 α n [ f ( y ˜ ) x ˜ , x n + 1 x ˜ + g ( x ˜ ) y ˜ , y n + 1 y ˜ ] ( 1 α n ) 2 [ d 2 ( x n , x ˜ ) + d 2 ( y n , y ˜ ) ] + α n α [ d 2 ( y n , y ˜ ) + d 2 ( x n + 1 , x ˜ ) + d 2 ( x n , x ˜ ) + d 2 ( y n + 1 , y ˜ ) ] + 2 α n [ f ( y ˜ ) x ˜ , x n + 1 x ˜ + g ( x ˜ ) y ˜ , y n + 1 y ˜ ] ,
(3.13)

which implies that

d 2 ( x n + 1 , x ˜ ) + d 2 ( y n + 1 , y ˜ ) 1 ( 2 α ) α n + α n 2 1 α α n [ d 2 ( x n , x ˜ ) + d 2 ( y n , y ˜ ) ] + 2 α n 1 α α n [ f ( y ˜ ) x ˜ , x n + 1 x ˜ + g ( x ˜ ) y ˜ , y n + 1 y ˜ ] 1 ( 2 α ) α n 1 α α n [ d 2 ( x n , x ˜ ) + d 2 ( y n , y ˜ ) ] + 2 α n 1 α α n [ f ( y ˜ ) x ˜ , x n + 1 x ˜ + g ( x ˜ ) y ˜ , y n + 1 y ˜ ] + α n 2 1 α M ,
(3.14)

where M> sup n 0 [ d 2 ( x n , x ˜ )+ d 2 ( y n , y ˜ )]. Thus,

d 2 ( x n + 1 , x ˜ )+ d 2 ( y n + 1 , y ˜ ) ( 1 α n ) [ d 2 ( x n , x ˜ ) + d 2 ( y n , y ˜ ) ] + α n β n ,
(3.15)

where

α n = 2 ( 1 α ) α n 1 α α n and β n = ( 1 α α n ) α n 2 ( 1 α ) 2 M+ 1 1 α [ f ( y ˜ ) x ˜ , x n + 1 x ˜ + g ( x ˜ ) y ˜ , y n + 1 y ˜ ] .

Applying Lemma 2.6, we have d 2 ( x n , x ˜ )+ d 2 ( y n , y ˜ )0. Hence x n x ˜ and y n y ˜ as n. This completes the proof of Theorem 3.3. □