Skip to main content
SpringerLink
Log in
Menu
Find a journal Publish with us
Search
Cart
  1. Home
  2. Reproductive Sciences
  3. Article

Farnesoid X Receptor Agonist GW4064 Inhibits Aromatase and ERβ Expression in Human Endometriotic Stromal Cells

  • Original Article
  • Open Access
  • Published: 01 August 2019
  • volume 26, pages 1111–1120 (2019)
Download PDF

You have full access to this open access article

Reproductive Sciences Aims and scope Submit manuscript
Farnesoid X Receptor Agonist GW4064 Inhibits Aromatase and ERβ Expression in Human Endometriotic Stromal Cells
Download PDF
  • Pei-Li Wu MD1,
  • Cheng Zeng MD1,
  • Ying-Fang Zhou MD, PhD1,
  • Ling Yin MD, PhD1,
  • Xiao-Lan Yu MD, PhD1 &
  • …
  • Qing Xue MD, PhD1 
  • 10 Accesses

  • 8 Citations

  • 1 Altmetric

  • Explore all metrics

  • Cite this article

Abstract

Endometriosis is an estrogen-dependent disease. Farnesoid X receptor (FXR) activation has been shown to inhibit estrogen signaling in breast cancer and testicular tumors. However, the role of FXR in endometriosis is still poorly understood. Here, we aimed to investigate whether FXR activation by its synthetic agonist GW4064 has a therapeutic effect on endometriosis and the underlying molecular mechanisms. We found that the expression of FXR (encoded by the NR1H4 gene) in endometriotic tissues and stromal cells (ESCs) was higher than that in eutopic endometrial tissues and stromal cells. The GW4064 treatment led to a dose-dependent decrease in aromatase and estrogen receptor β (ERβ) expression and induced ERK1/2, p38, AMPK, and Stat3 activation in ESCs. In contrast, ERK1/2 inhibitor reversed the GW4064-induced reduction in aromatase expression. In addition, treatment with p38, AMPK, and Stat3 inhibitors or small interfering RNAs could also reverse the GW4064-induced reduction of ERβ expression in ESCs. The GW4064 treatment markedly increased Stat3 phosphorylation, enhancing the binding of Stat3 to the ESR2 promoter, which resulted in the downregulation of ERβ. Coimmunoprecipitation assay and chromatin immunoprecipitation analysis revealed that FXR was able to compete with cyclic AMP response element-binding (CREB) protein for binding to a common sequence on the aromatase promoter region after GW4064 treatment in ESCs. Moreover, treatment of endometriosis xenografts with GW4064 suppressed aromatase and ERβ expression in nude mice. Our results suggest that FXR may represent a potential therapeutic target for future therapy.

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

References

  1. Olive DL, Schwartz LB. Endometriosis. N Engl J Med. 1993;328(24):1759–1769.

    Article  CAS  Google Scholar 

  2. Kuznetsov L, Dworzynski K, Davies M, Overton C; Guideline Committee. Diagnosis and management of endometriosis: summary of NICE guidance. BMJ. 2017;358:j4227.

    Google Scholar 

  3. Bulun SE, Yang S, Fang Z, et al. Role of aromatase in endometrial disease. J Steroid Biochem Mol Biol. 2001;79(1–5):19–25.

    Article  CAS  Google Scholar 

  4. Xu JN, Zeng C, Zhou Y, Peng C, Zhou YF, Xue Q. Metformin inhibits StAR expression in human endometriotic stromal cells via AMPK-mediated disruption of CREB-CRTC2 complex formation. J Clin Endocrinol Metab. 2014;99(8):2795–2803.

    Article  CAS  Google Scholar 

  5. Attar E, Tokunaga H, Imir G, et al. Prostaglandin E2 via steroidogenic factor-1 coordinately regulates transcription of steroidogenic genes necessary for estrogen synthesis in endometriosis. J Clin Endocrinol Metab. 2009;94(2):623–631.

    Article  CAS  Google Scholar 

  6. Michael MD, Michael LF, Simpson ER. A CRE-like sequence that binds CREB and contributes to cAMP-dependent regulation of the proximal promoter of the human aromatase P450 (CYP19) gene. Mol Cell Endocrinol. 1997;134(2):147–156.

    Article  CAS  Google Scholar 

  7. Trukhacheva E, Lin Z, Reierstad S, Cheng YH, Milad M, Bulun SE. Estrogen receptor (ER) beta regulates ERalpha expression in stromal cells derived from ovarian endometriosis. J Clin Endocrinol Metab. 2009;94(2):615–622.

    Article  CAS  Google Scholar 

  8. Han SJ, Jung SY, Wu SP, et al. Estrogen receptor b modulates apoptosis complexes and the inflammasome to drive the pathogenesis of endometriosis. Cell. 2015;163(4):960–974.

    Article  CAS  Google Scholar 

  9. Makishima M, Okamoto AY, Repa JJ, et al. Identification of a nuclear receptor for bile acids [J]. Science. 1999;284(5418):1362–1365.

    Article  CAS  Google Scholar 

  10. Parks DJ, Blanchard SG, Bledsoe RK, et al. Bile acids: natural ligands for an orphan nuclear receptor [J]. Science. 1999;284(5418):1365–1368.

    Article  CAS  Google Scholar 

  11. Swales KE, Korbonits M, Carpenter R, Walsh DT, Warner TD, Bishop-Bailey D. The farnesoid X receptor is expressed in breast cancer and regulates apoptosis and aromatase expression. Cancer Res. 2006;66(20):10120–10126.

    Article  CAS  Google Scholar 

  12. Catalano S, Panza S, Malivindi R, et al. Inhibition of Leydig tumor growth by farnesoid X receptor activation: the in vitro and in vivo basis for a novel therapeutic strategy. Int J Cancer. 2013;132(10):2237–2247.

    Article  CAS  Google Scholar 

  13. Claudel T, Sturm E, Duez H, et al. Bile acidactivated nuclear receptor FXR suppresses apolipoprotein A-I transcription via a negative FXR response element. J Clin Invest. 2002;109(7):961–971.

    Article  CAS  Google Scholar 

  14. Laffitte BA, Kast HR, Nguyen CM, Zavacki AM, Moore DD, Edwards PA. Identification of the DNA binding specificity and potential target genes for the farnesoid X-activated receptor. J Biol Chem. 2000;275(14):10638–10647.

    Article  CAS  Google Scholar 

  15. Seok S, Fu T, Choi SE, et al. Transcriptional regulation of autophagy by an FXR-CREB axis. Nature. 2014;516(7529):108–111.

    Article  CAS  Google Scholar 

  16. Zhao A, Yu J, Lew JL, Huang L, Wright SD, Cui J. Polyunsaturated fatty acids are FXR ligands and differentially regulate expression of FXR targets [J]. DNA Cell Biol. 2004;23(8):519–526.

    Article  CAS  Google Scholar 

  17. Herington JL, Glore DR, Lucas JA, Osteen KG, Bruner-Tran KL. Dietary fish oil supplementation inhibits formation of endometriosis-associated adhesions in a chimeric mouse model [J]. Fertil Steril. 2013;99(2):543–550.

    Article  CAS  Google Scholar 

  18. Netsu S, Konno R, Odagiri K, Soma M, Fujiwara H, Suzuki M. Oral eicosapentaenoic acid supplementation as possible therapy for endometriosis [J]. Fertil Steril. 2008;90(suppl 4):1496–1502.

    Article  CAS  Google Scholar 

  19. Ryan IP, Schriock ED, Taylor RN. Isolation, characterization, and comparison of human endometrial and endometriosis cells in vitro. J Clin Endocrinol Metab. 1994;78(3):642–649.

    CAS  PubMed  Google Scholar 

  20. Bruner-Tran KL, Eisenberg E, Yeaman GR, Anderson TA, McBean J, Osteen KG. Steroid and cytokine regulation of matrix metalloproteinase expression in endometriosis and the establishment of experimental endometriosis in nude mice. J Clin Endocrinol Metab. 2002;87(10):4782–4791.

    Article  CAS  Google Scholar 

  21. Guo F, Xu Z, Zhang Y, et al. FXR induces SOCS3 and suppresses hepatocellular carcinoma. Oncotarget. 2015;6(33):34606–34616.

    Article  Google Scholar 

  22. Wang HC, Yeh HH, Huang WL, et al. Activation of the signal transducer and activator of transcription 3 pathway up-regulates estrogen receptor-beta expression in lung adenocarcinoma cells. Mol Endocrinol. 2011;25(7):1145–1158.

    Article  CAS  Google Scholar 

  23. Zhou Y, Zeng C, Li X, et al. IGF-I stimulates ERb and aromatase expression via IGF1R/PI3K/AKT-mediated transcriptional activation in endometriosis. J Mol Med (Berl). 2016;94(8):887–897.

    Article  CAS  Google Scholar 

  24. Glastras SJ, Wong MG, Chen H, et al. FXR expression is associated with dysregulated glucose and lipid levels in the offspring kidney induced by maternal obesity. Nutr Metab (Lond). 2015;12:40.

    Article  Google Scholar 

  25. Moscovitz JE, Kong B, Buckley K, Buckley B, Guo GL, Aleksunes LM. Restoration of enterohepatic bile acid pathways in pregnant mice following short term activation of FXR by GW4064. Toxicol Appl Pharmacol. 2016;310:60–67.

    Article  CAS  Google Scholar 

  26. Fiorucci S, Clerici C, Antonelli E, et al. Protective effects of 6- ethyl chenodeoxycholic acid, a farnesoid X receptor ligand, in estrogen-induced cholestasis. J Pharmacol Exp Ther. 2005;313(2):604–612.

    Article  CAS  Google Scholar 

  27. Goodwin B, Jones SA, Price RR, et al. A regulatory cascade of the nuclear receptors FXR, SHP-1, and LRH-1 represses bile acid biosynthesis. Mol Cell. 2000;6(3):517–526.

    Article  CAS  Google Scholar 

  28. Zeitoun K, Takayama K, Michael MD, Bulun SE. Stimulation of aromatase P450 promoter (II) activity in endometriosis and its inhibition in endometrium are regulated by competitive binding of steroidogenic factor-1 and chicken ovalbumin upstream promoter transcription factor to the same cis-acting element. Mol Endocrinol. 1999;13(2):239–253.

    Article  CAS  Google Scholar 

  29. Byun S, Kim YC, Zhang Y, et al. A postprandial FGF19-SHPLSD1 regulatory axis mediates epigenetic repression of hepatic autophagy. EMBO J. 2017;36(12):1755–1769.

    Article  CAS  Google Scholar 

  30. Hou C, Zhong Y, Wang Z, et al. STAT3-mediated epigenetic silencing of FOXP3 in LADA T cells is regulated through HDAC5 and DNMT1. Clin Immunol. 2018;191:116–125.

    Article  CAS  Google Scholar 

  31. Lu L, Zhu F, Zhang M, et al. Gene regulation and suppression of type I interferon signaling by STAT3 in diffuse large B cell lymphoma. Proc Natl Acad Sci U S A. 2018;115(3):E498–E505.

    Article  CAS  Google Scholar 

  32. Wang W, Zhan M, Li Q, et al. FXR agonists enhance the sensitivity of biliary tract cancer cells to cisplatin via SHP dependent inhibition of Bcl-xL expression. Oncotarget. 2016;7(23):34617–34629.

    Article  Google Scholar 

  33. Huang H, Xu Y, Zhu J, Li J. Recent advances in non-steroidal FXR antagonists development for therapeutic applications. Curr Top Med Chem. 2014;14(19):2175–2187.

    Article  CAS  Google Scholar 

  34. Moraes LA, Unsworth AJ, Vaiyapuri S, et al. Farnesoid X receptor and its ligands inhibit the function of platelets. Arterioscler Thromb Vasc Biol. 2016;36(12):2324–2333.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors thank Professors Yu Qi and Ding-Fang Bu for their generous advice regarding this study.

Author information

Authors and Affiliations

  1. Department of Obstetrics and Gynecology, Peking University First Hospital, No.1 Xi’anmen Street, Beijing, 100034, China

    Pei-Li Wu MD, Cheng Zeng MD, Ying-Fang Zhou MD, PhD, Ling Yin MD, PhD, Xiao-Lan Yu MD, PhD & Qing Xue MD, PhD

Authors
  1. Pei-Li Wu MD
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Cheng Zeng MD
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Ying-Fang Zhou MD, PhD
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. Ling Yin MD, PhD
    View author publications

    You can also search for this author in PubMed Google Scholar

  5. Xiao-Lan Yu MD, PhD
    View author publications

    You can also search for this author in PubMed Google Scholar

  6. Qing Xue MD, PhD
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Qing Xue MD, PhD.

Rights and permissions

This article is published under an open access license. Please check the 'Copyright Information' section either on this page or in the PDF for details of this license and what re-use is permitted. If your intended use exceeds what is permitted by the license or if you are unable to locate the licence and re-use information, please contact the Rights and Permissions team.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, PL., Zeng, C., Zhou, YF. et al. Farnesoid X Receptor Agonist GW4064 Inhibits Aromatase and ERβ Expression in Human Endometriotic Stromal Cells. Reproductive Sciences 26, 1111–1120 (2019). https://doi.org/10.1177/1933719118808912

Download citation

  • Published: 01 August 2019

  • Issue Date: August 2019

  • DOI: https://doi.org/10.1177/1933719118808912

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • endometriosis
  • FXR
  • CREB
  • Stat3
  • aromatase
  • ERβ

Working on a manuscript?

Avoid the common mistakes

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support

Not affiliated

Springer Nature

© 2023 Springer Nature