Skip to main content

Advertisement

Log in

Fenretinide:A Potential Treatment for Endometriosis

  • Original Artide
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Objective

Fenretinide is a synthetic retinoid analogue that promotes apoptosis but has decreased toxicity when compared to other retinoids. We have previously shown that retinoic acid (RA) production in endometriotic tissue is decreased, resulting in reduced estrogen metabolism and apoptotic resistance. We hypothesize fenretinide may induce apoptosis in endometriotic cells and tissues, thereby reducing disease burden.

Materials and Methods

Primary endometriotic stromal cells were collected, isolated, cultured, and treated with fenretinide in doses from 0 to 20 p,mol/L. Cell count, viability, and immunoblots were per-formed to examine apoptosis. Quantitative reverse transcription-polymerase chain reaction from endometriotic cells treated with fenretinide was used to examine expression of genes involved in RA signaling including stimulated by RA 6 (STRA6), cellular RA binding protein 2 (CRABP2), and fatty acid binding protein 5 (FABP5). Endometriotic tissue was xenografted subcutaneously into the flanks of mice which were treated with fenretinide for 2 weeks, after which the mice were killed and lesion volumes calculated. Statistical analysis was performed using ttestand analysis ofvariance.

Results

Treatment with fenretinide significantly decreased total cell count (doses 5-20 p,L) and viability (doses 10-20 p,mol/L). Fenretinide increased protein levels of the apoptotic marker poly (ADP ribose) polymerase (starting at 10 p,mol/L) and decreased proliferation marker proliferating cell nuclear antigen (10 μmol/L, starting at 8-day treatment). Examination of genes involved in retinoid uptake and action showed that treatment induced STRA6 expression while expression of CRABP2 and FABP5 remained unchanged. Fenretinide also significantly decreased the endometriotic lesion xenograft volume.

Conclusions

Fenretinide increases STRA6 expression thereby potentially reversing the pathological loss of retinoid availability. Treatment with this Compound induces apoptosis. In vivo treatments decrease lesion volume. Targeting the RA signaling pathway may be a promising novel treatment for women with endometriosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bulun SE. Endometriosis. N Engl J Med. 2009;360(3):268–279.

    CAS  PubMed  Google Scholar 

  2. Giudice LC. Clinical practice. Endometriosis. N Engl J Med. 2010;362(25):2389–2398.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Lucidi RS, Witz CA, Chrisco M, Binkley PA, Shain SA, Schenken RS. A novel in vitro model of the early endometriotic lesion demonstrates that attachment of endometrial cells to mesothelial cells is dependent on the source of endometrial cells. Fertil Steril. 2005;84(1):16–21.

    PubMed  Google Scholar 

  4. Giudice LC, Kao LC. Endometriosis. Lancet. 2004;364(9447):1789–1799.

    PubMed  Google Scholar 

  5. Giudice LC, Teiles TL, Lobo S, Kao L. The molecular basis for implantation failure in endometriosis:on the road to discov-ery. Ann N Y Acad Sci. 2002;955:252–264; discussion 293-255, 396-406.

    CAS  PubMed  Google Scholar 

  6. Bulun SE, Cheng YH, Pavone ME, et al.. Estrogen receptorbeta, estrogen receptoralpha, and progesterone resistance in endometriosis. Semin Reprod Med. 2010;28(1):36–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Pavone ME, Dyson M, Reirstad S, et al.. Endometriosis expresses a molecular pattern consistent with decreased retinoid uptake, metabolism and action. Hum Reprod. 2011;26(8):2157–2164.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Pavone ME, Reierstad S, Sun H, Milad M, Bulun SE, Cheng YH. Altered retinoid uptake and action contributes to cell survival in endometriosis. J Clin Endocrinol Metab. 2010;95(11):300–309.

    Google Scholar 

  9. Umesono K, Giguere V, Glass CK, Rosenfeld MG, Evans RM. Retinoic acid and thyroid hormone induce gene expression through a common responsive element. Nature. 1988; 336(6196):262–265.

    CAS  PubMed  Google Scholar 

  10. Jones S, Meng L, Parsons DW, et al.. Somatic mutations in the chromatin remodeling gene ARID1A occur in several tumor types. Hum Mutat. 2012;33(1):100–103.

    CAS  PubMed  Google Scholar 

  11. Nasu K, Yuge A, Tsuno A, Nishida M, Narahara H. Involvement of resistance to apoptosis in the pathogenesis of endometriosis. Histol Histopathol. 2009;24(9):1181–1192.

    CAS  PubMed  Google Scholar 

  12. Formelli F, Barua AB, Olson JA. Bioactivities of N-(4-hydroxy-phenyl) retinamide and retinoyl beta-glucuronide. Faseb J. 1996; 10(9):1014–1024.

    CAS  PubMed  Google Scholar 

  13. Broaddus RR, Xie S, Hsu CJ, Wang J, Zhang S, Zou C. The chemopreventive agents 4-HPR and DFMO inhibit growth and induce apoptosis in uterine leiomyomas. Am J Obstet Gynecol. 2004;190(3):686–692.

    CAS  PubMed  Google Scholar 

  14. Ciolino HP, Dai Z, Nair V. Retinol inhibits aromatase activity and expression in vitro. J Nutr Biochem. 2011;22(6):522–526.

    CAS  PubMed  Google Scholar 

  15. Ciolino HP, Wang TT, Sathyamoorthy N. Inhibition of aromatase activity and expression in MCF-7 cells by the chemopreventive retinoid N-(4-hydroxy-phenyl)-retinamide. Br J Cancer. 2000; 83(3):333–337.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Pavone ME, Bulun SE. Aromatase inhibitors for the treatment of endometriosis. Fertil Steril. 2012;98(6):1370–1379.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Ryan IP, Schriock ED, Taylor RN. Isolation, characterization, and comparison of human endometrial and endometriosis cells in vitro. J Clin Endocrinol Metab. 1994;78(3):642–649.

    CAS  PubMed  Google Scholar 

  18. Noble LS, Takayama K, Zeitoun KM, et al.. Prostaglandin E2 stimulates aromatase expression in endometriosis-derived stromal cells. J Clin Endocrinol Metab. 1997;82(2):600–606.

    CAS  PubMed  Google Scholar 

  19. Dyson MT, Roqueiro D, Monsivais D, et al.. Genome-wide DNA methylation analysis predicts an epigenetic switch for GATA factor expression in endometriosis. PLoS Genet. 2014;10(3):e1004158.

    PubMed  PubMed Central  Google Scholar 

  20. Biorad. Bio-Rad TC20 Automated Cell Counter Description. Cell Counter Description. Web site. http://www.bio-rad.com/en-us/product/tc20-automated-cell-counter?tab=Description.

  21. Dyson MT, Jones JK, Kowalewski MP, et al.. Mitochondrial Akinase anchoring protein 121 binds type II protein kinase A and enhances steroidogenic acute regulatory protein-mediated steroi-dogenesis in MA-10 mouse leydig tumor cells. Biol Reprod. 2008; 78(2):267–277.

    CAS  PubMed  Google Scholar 

  22. Bruner KL, Eisenberg E, Gorstein F, Osteen KG. Progesterone and transforming growth factor-beta coordinately regulate sup-pression of endometrial matrix metalloproteinases in a model of experimental endometriosis. Steroids. 1999;64(9):648–653.

    CAS  PubMed  Google Scholar 

  23. Bruner KL, Matrisian LM, Rodgers WH, Gorstein F, Osteen KG. Suppression of matrix metalloproteinases inhibits establishment of ectopic lesions by human endometrium in nude mice. J Clin Invest. 1997;99(12):2851–2857.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Eaton JL, Unno K, Caraveo M, Lu Z, Kim JJ. Increased AKT or MEK1/2 activity influences progesterone receptor levels and localization in endometriosis. J Clin Endocrinol Metab. 2013; 98(12):e1871–e1879.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Formelli F, Cleris L. Therapeutic effects of the combination of fenretinide and all-trans-retinoic acid and of the two retinoids with cisplatin in a human ovarian Carcinoma xenograft and in a cisplatin-resistant sub-line. Eur J Cancer. 2000;36(18):2411–2419.

    CAS  PubMed  Google Scholar 

  26. Carrera S, Cuadrado-Castano S, Samuel J, et al.. Stra6, a retinoic acid-responsive gene, participates in p53-induced apoptosis after DNA damage. Cell Death Differ. 2013;20(7):910–919.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Decensi A, Robertson C, Guerrieri-Gonzaga A, et al.. Randomized double-blind 2x2 trial of low-dose tamoxifen and fenretinide for breast Cancer prevention in high-risk premenopausal women. J Clin Oncol. 2009;27(23):3749–3756.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Villablanca JG, London WB, Naranjo A, et al.. Phase II study of oral capsular 4-hydroxyphenylretinamide (4-HPR/fenretinide) in pediatric patients with refractory or recurrent neuroblastoma:a report from the Children’s Oncology Group. Clin Cancer Res. 2011;17(21):6858–6866.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Maurer BJ, Kang MH, Villablanca JG, et al.. Phase I trial of fenretinide delivered orally in a novel organized lipid complex in patients with relapsed/refractory neuroblastoma:a report from the New Approaches to Neuroblastoma Therapy (NANT) consor-tium. PediatrBlood Cancer. 2013;60(11):1801–1808.

    CAS  Google Scholar 

  30. Ratko TA, Detrisac CJ, Dinger NM, Thomas CF, Kelloff GJ, Moon RC. Chemopreventive efficacy of combined retinoid and tamoxifen treatment following surgical excision of a primary mammary Cancer in female rats. Cancer Res. 1989;49(16):4472–4476.

    CAS  PubMed  Google Scholar 

  31. Mittal N, Malpani S, Dyson M, et al.. Fenretinide:a novel treatment for endometrial Cancer. PLoS One. 2014;9(10):e110410.

    PubMed  PubMed Central  Google Scholar 

  32. Gopal AK, Pagel JM, Hedin N, Press OW. Fenretinide enhances rituximab-induced cytotoxicity against B-cell lymphoma xeno-grafts through a caspase-dependent mechanism. Blood. 2004; 103(9):3516–3520.

    CAS  PubMed  Google Scholar 

  33. Mukherjee N, Reuland SN, Lu Y, et al.. Combining a BCL2 inhi-bitor with the retinoid derivative fenretinide targets melanoma cells Including melanoma initiating cells. J Invest Dermatol. 2015;135(3):842–850.

    CAS  PubMed  Google Scholar 

  34. Cheng YH, Yin P, Xue Q, Yilmaz B, Dawson MI, Bulun SE. Retinoic acid (RA) regulates 17beta-hydroxySteroid dehydrogenase type 2 expression in endometrium:interaction of RA receptors with specificity protein (SP) 1/SP3 for estradiol metabolism. J Clin Endocrinol Metab. 2008;93(5):1915–1923.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Berry DC, O’Byrne SM, Vreeland AC, Blaner WS, Noy N. Cross talk between signaling and vitamin A Transport by the retinol-binding protein receptor STRA6. Mol Cell Biol. 2012;32(15):3164–3175.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Sokalska A, Anderson M, Villanueva J, et al.. Effects of simvastatin on retinoic acid System in primary human endometrial stro-mal cells and in a chimeric model of human endometriosis. J Clin Endocrinol Metab. 2013;98(3):e463–e471.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Veronesi U, De Palo G, Marubini E, et al.. Randomized trial of fenretinide to prevent second breast malignancy in women with early breast Cancer. J Natl Cancer Inst. 1999;91(21):1847–1856.

    CAS  PubMed  Google Scholar 

  38. Veronesi U, Mariani L, Decensi A, et al.. Fifteen-year results of a randomized phase III trial of fenretinide to prevent second breast Cancer. Ann Oncol. 2006;17(7):1065–1071.

    CAS  PubMed  Google Scholar 

  39. Torrisi R, Parodi S, Fontana V, et al.. Effect of fenretinide on plasma IGF-I and IGFBP-3 in early breast Cancer patients. Int J Cancer. 1998;76(6):787–790.

    CAS  PubMed  Google Scholar 

  40. Koay DC, Zerillo C, Narayan M, Harris LN, DiGiovanna MP. Anti-tumor effects of retinoids combined with trastuzumab or tamoxifen in breast Cancer cells:induction of apoptosis by retinoid/trastuzumab combinations. Breast Cancer Res. 2010;12(4):r62.

    PubMed  PubMed Central  Google Scholar 

  41. Durante S, Orienti I, Teti G, et al.. Antitumor activity of fenretinide complexed with human serum albumin in lung Cancer xenograft mouse model. Oncotarget. 2014;5(13):4811–4820.

    PubMed  PubMed Central  Google Scholar 

  42. Mata NL, Lichter JB, Vogel R, Han Y, Bui TV, Singerman LJ. Investigation of oral fenretinide for treatment of geographic atro-phy in age-related macular degeneration. Retina. 2013;33(3):498–507.

    CAS  PubMed  Google Scholar 

  43. Holpuch AS, Phelps MP, Desai K-GH, et al.. Evaluation of a mucoadhesive fenretinide patch for local intraoral delivery:a strategy to reintroduce fenretinide for oral Cancer chemoprevention. Carcinogenesis. 2012;33(5):1098–1105.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Costa A, Malone W, Perloff M, et al.. Tolerability of the synthetic retinoid fenretinide® (HPR). Eur J Canc Clin Oncol. 1989;25(5):805–808.

    CAS  Google Scholar 

  45. Camerini T, Mariani L, De Palo G, et al.. Safety of the synthetic retinoid fenretinide:long-term results from a controlled clinical trial for the prevention of contralateral breast Cancer. J Clin Oncol. 2001; 19(6):1664–1670.

    CAS  PubMed  Google Scholar 

  46. Soprano DR, Soprano KJ. Retinoids as teratogens. Annu Rev Nutr. 1995;15(1):111–132.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mary Ellen Pavone MD, MSc.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pavone, M.E., Malpani, S.S., Dyson, M. et al. Fenretinide:A Potential Treatment for Endometriosis. Reprod. Sci. 23, 1139–1147 (2016). https://doi.org/10.1177/1933719116632920

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719116632920

Keywords

Navigation