Skip to main content

Advertisement

Log in

Block of Granulocyte-Macrophage Colony-Stimulating Factor Prevents Inflammation-Induced Preterm Birth in a Mouse Model for Parturition

  • Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Objective

A multitude of factors promotes inflammation in the reproductive tract leading to preterm birth. Macrophages peak in the cervix prior to birth and their numbers are increased by the cytokine granulocyte-macrophage colony-stimulating factor (GM-CSF). We hypothesize GM-CSF is produced from multiple sites in the genital tract and is a key mediator in preterm birth.

Study Design

Ectocervical, endocervical, and amniotic fluid mesenchymal stem cells were treated with lipopolysaccharide (LPS), and the concentration and expression of GM-CSF was measured. Pregnant CD-1 mice on gestational day 17 received LPS and an intravenous injection of either anti-mouse GM-CSF or control antibody. After 6 hours, the preterm birth rate was recorded.

Results

Treatment with LPS increased the GM-CSF concentration and messenger RNA expression after 24 hours in all 3 cell lines (P <.01). Mice treated with LPS and the GM-CSF antibody had a preterm birth rate of 25%, compared to a 66.7% preterm birth rate in controls, within 6 hours (P <.05, χ2). Treatment with the anti-mouse GM-CSF antibody decreased the concentration of GM-CSF in the mouse serum (P <.01) but did not alter the number of macrophages or collagen content in the cervix.

Conclusion

These studies demonstrate that GM-CSF is produced from multiple sites in the genital tract and that treatment with an antibody to GM-CSF prevents preterm birth. Curiously, the anti-mouse GM-CSF antibody did not decrease the number of macrophages in the cervix. Further research is needed to determine whether antibodies to GM-CSF can be utilized as a therapeutic agent to prevent preterm birth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Goldenbertg R, Culhane J, Iams J, Romero R. Epidemiology and causes of preterm birth. Lancet. 2008;371(9606):75–84.

    Google Scholar 

  2. Blencowe H, Cousens S, Oestergaard M, et al. National, regional and worldwide estimates of preterm birth. Lancet. 2012;379(9832):2162–2172.

    PubMed  Google Scholar 

  3. Romero R, Dey S, Fisher S. Preterm labor: one syndrome, many causes. Science. 2014;345(6198):760–765.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Kemp W, Saito M, Newnham JP, Nitsos I, Okamura K, Kallapur SG. Preterm birth, infection, and inflammation advances from the study of animal models. Reprod Sci. 2010;17(7):619–628.

    PubMed  Google Scholar 

  5. Huang WC, Sala-Newby GB, Susana A, Johnson JL, Newby AC. Classical macrophage activation up-regulates several matrix metalloproteinases through mitogen activated protein kinases and nuclear factor-kappaB. PLoS One. 2012;7(8):e42507.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Vadillo-Ortega F, Hernandez A, Gonzalez-Avila G, Bermejo L, Iwata K, Strauss J. Increased matrix metalloproteinase activity and reduced tissue inhibitor of metalloproteinases-1 levels in amniotic fluids from pregnancies complicated by premature rupture of membranes. Am J Obstet Gynecol. 1996;174(4):1371–1376.

    CAS  PubMed  Google Scholar 

  7. Athayde N, Edwin SS, Romero R, et al. A role for matrix metalloproteinase-9 in spontaneous rupture of the fetal membranes. Am J Obstet Gynecol. 1998;179(5):1248–1253.

    CAS  PubMed  Google Scholar 

  8. Xu P, Alfaidy N, Challis JR. Expression of matrix metalloproteinase (MMP)-2 and MMP-9 in human placenta and fetal membranes in relation to preterm and term labor. J Clin Endocrinol Metab. 2002;87(3):1353–1361.

    CAS  PubMed  Google Scholar 

  9. Gomez-Lopez N, StLouis D, Lehr M, Sanchez-Rodriguez E, Arenas-Hernandez M. Immune cells in term and preterm labor. Cell Mol Immunol. 2014;11(6):571–581.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Yellon S, Dobyns A, Beck H, Kurtzman J, Garfield R, Kirby M. Loss of progesterone receptor-mediated actions induce preterm cellular and structural remodeling of the cervix and premature birth. PLoS One. 2013;8(12):e81340.

    PubMed  PubMed Central  Google Scholar 

  11. Kirby M, Heuerman A, Custer M, et al. Progesterone receptor-mediated actions regulate remodeling of the cervix in preparation for preterm parturition. Reprod Sci. 2016;23(11):1473–1483.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Yellon S. Contributions to the dynamics of cervix remodeling prior to term and preterm birth. Biol Reprod. 2017;96(1):13–23.

    PubMed  Google Scholar 

  13. Cetean S, Căinap C, Constantin A, et al. The importance of the granulocyte-colony stimulating factor in oncology. Clujul Med. 2015;88(4):468–472.

    PubMed  PubMed Central  Google Scholar 

  14. Shi Y, Liu C, Roberts A, et al. Granulocyte-macrophage colony-stimulating factor (GM-CSF) and T-cell responses: what we do and don’t know. Cell Res. 2006;16(2):126–133.

    CAS  PubMed  Google Scholar 

  15. Curry AE, Thorsen P, Drews C, et al. First-trimester maternal plasma cytokine levels, pre-pregnancy body mass index, and spontaneous preterm delivery. Acta Obstet Gynecol Scand. 2009;88(3):332–342.

    CAS  PubMed  Google Scholar 

  16. Chandiramani M, Seed P, Orsi N, et al. Limited relationship between cervico-vaginal fluid cytokine profiles and cervical shortening in women at high risk of spontaneous preterm birth. PLoS One. 2012;7(12):e52412.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Basraon S, Menon R, Makhlouf M, et al. Can statins reduce the inflammatory response associated with preterm birth in an animal model? Am J Obstet Gynecol. 2012;207(3):224.e1–227.e1.

    CAS  Google Scholar 

  18. Phermthai T, Odglun Y, Julavijitphong S, et al. A novel method to derive amniotic fluid stem cells for therapeutic purposes. BMC Cell Biol. 2010;11:79. doi:https://doi.org/10.1186/1471-2121-11-79

    PubMed  PubMed Central  Google Scholar 

  19. Elovitz MA, Wang Z, Chien EK, Rychlik DF, Phillippe M. A new model for inflammation-induced preterm birth: the role of platelet-activating factor and toll-like receptor-4. Am J Pathol. 2003;163(5):2103–2111.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Kirby M, Heuerman A, Custer M et al. Progesterone receptor-mediated actions regulate remodeling of the cervix in preparation for preterm parturition. Reprod Sci. 2016;23(11):1473–1483.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Nold C, Maubert M, Anton L, Yellon S, Elovitz M. Prevention of preterm birth by progestational agents: what are the molecular mechanisms? Am J Obstet Gynecol. 2013;208(3):223.e1–223.e7.

    CAS  Google Scholar 

  22. Nold C, Anton L, Brown A, Elovitz M. Inflammation promotes a cytokine response and disrupts the cervical epithelial barrier: a possible mechanism of premature cervical remodeling and preterm birth. Am J Obstet Gynecol. 2012;206(3):208.e1–208.e7.

    CAS  Google Scholar 

  23. Bastek J, Gómez L, Elovitz M. The role of inflammation and infection in preterm birth. Clin Perinatol. 2011;38(3):385–406.

    PubMed  Google Scholar 

  24. Menon R, Fortunato S. Infection and the role of inflammation in preterm premature rupture of the membranes. Best Pract Res Clin Obstet Gynaecol. 2007;21(3):467–478.

    PubMed  Google Scholar 

  25. Basraon S, Costantine M, Saade G, Menon R. The effect of simvastatin on infection-induced inflammatory response of human fetal membranes. Am J Reprod Immunol. 2015;74(1):54–61.

    CAS  PubMed  Google Scholar 

  26. Gonzalez J, Pedroni S, Girardi G. Statins prevent cervical remodeling, myometrial contractions and preterm labor through a mechanism that involves hemoxygenase-1 and complement inhibition. Mol Hum Reprod. 2014;20(6):579–589.

    CAS  PubMed  Google Scholar 

  27. Shynlova O, Dorogin A, Li Y, Lye S. Inhibition of infection-mediated preterm birth by administration of broad spectrum chemokine inhibitor in mice. J Cell Mol Med. 2014;18(9):1816–1829.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Arango Duque G, Descoteaux A. Macrophage cytokines: involvement in immunity and infectious diseases. Front Immunol. 2014;5:491.

    PubMed  PubMed Central  Google Scholar 

  29. Gonzalez JM, Romero R, Girardi G. Comparison of the mechanisms responsible for cervical remodeling in preterm and term labor. J Reprod Immunol. 2013;97(1):112–119.

    PubMed  PubMed Central  Google Scholar 

  30. Gonzalez J, Franzke C, Yang F, Romero R, Girardi G. Complement activation triggers metalloproteinases release inducing cervical remodeling and preterm birth in mice. Am J Pathol. 2011;179(2):838–849.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Yellon S, Ebner CA, Elovitz M. Medroxyprogesterone acetate modulates remodeling, immune cell census, and nerve fibers in the cervix of a mouse model for inflammation-induced preterm birth. Reprod Sci. 2009;16(3):257–264.

    CAS  PubMed  Google Scholar 

  32. Parisi L, Gini E, Baci D, et al. Macrophage polarization in chronic inflammatory diseases: killers or builders? J Immunol Res. 2018;2018:8917804.

    PubMed  PubMed Central  Google Scholar 

  33. Dos Anjos Cassado A. F4/80 as a major macrophage marker: the case of the peritoneum and spleen. Results Probl Cell Differ. 2017;62:161–179.

    PubMed  Google Scholar 

  34. Wang Y, Weng Y, Shi Y, Xia X, Wang S, Duan H. Expression and functional analysis of Toll-like receptor 4 in human cervical carcinoma. J Membr Biol. 2014;247(7):591–599.

    CAS  PubMed  Google Scholar 

  35. Schioppo T, Ingegnoli F. Current perspective on rituximab in rheumatic diseases. Drug Des Devel Ther. 2017;11:2891–2904.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Marin-Acevedo J, Soyano A, Dholaria B, Knutson K, Lou Y. Cancer immunotherapy beyond immune checkpoint inhibitors. J Hematol Oncol. 2018;11(1):8.

    PubMed  PubMed Central  Google Scholar 

  37. McGinty L, Kolesar J. Dinutuximab for maintenance therapy in pediatric neuroblastoma. Am J Health Syst Pharm. 2017;74(8):563–567.

    CAS  PubMed  Google Scholar 

  38. Shiomi A, Usui T, Mimori T. GM-CSF as a therapeutic target in autoimmune diseases. Inflamm Regen. 2016;36:8.

    PubMed  PubMed Central  Google Scholar 

  39. Elovitz M, Mrinalini C. Animal models of preterm birth. Trends Endocrinol Metab. 2004;15(10):479–487.

    CAS  PubMed  Google Scholar 

  40. Mitchell B, Taggart M. Are animal models relevant to key aspects of human parturition? Am J Physiol Regul Integr Comp Physiol. 2009;297(3):R525–R545.

    CAS  PubMed  Google Scholar 

  41. Liggins G. Premature delivery of foetal lambs infused with glucocorticoids. J Endocrinol. 1969;45(4):515–523.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher Nold MD.

Additional information

Authors’ Note

This research was conducted at the University of Connecticut School of Medicine in Farmington, Connecticut, and Loma Linda University in Loma Linda, California.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nold, C., Stone, J., O’Hara, K. et al. Block of Granulocyte-Macrophage Colony-Stimulating Factor Prevents Inflammation-Induced Preterm Birth in a Mouse Model for Parturition. Reprod. Sci. 26, 551–559 (2019). https://doi.org/10.1177/1933719118804420

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719118804420

Keywords

Navigation