Skip to main content
Log in

Neuroendocrine Regulation of Food Intake in Polycystic Ovary Syndrome

  • Review
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Several peripheral and central signals are involved in the sophisticated regulation of food intake. Women with polycystic ovary syndrome (PCOS) are prone to consume a diet higher in saturated fat and foods with high glycemic index and show impaired appetite regulation and measures of satiety. As a consequence, obesity, mostly of the central type, is prevalent in the syndrome and worsens the endocrine and metabolic profile of the affected patients. This review article briefly analyzes the current knowledge about the neuroendocrine mechanisms underlying the interplay between feeding behavior, obesity, and reproductive abnormalities in PCOS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Homburg R. Polycystic ovary syndrome-from gynaecological curiosity to multisystem endocrinopathy. Hum Reprod. 1996; 11(1):29–39.

    Article  CAS  PubMed  Google Scholar 

  2. Franks S. Polycystic ovary syndrome. N Engl J Med. 1995; 333(13):853–861.doi:10.1056/NEJM199509283331307.

    Article  CAS  PubMed  Google Scholar 

  3. Balen A. Pathogenesis of polycystic ovary syndrome—the enigma unravels? Lancet. 1999;354(9183):966–967. doi:10.1016/S0140-6736(99)00218-4.

    Article  CAS  PubMed  Google Scholar 

  4. Legro RS. Obesity and PCOS: implications for diagnosis and treatment. Semin Reprod Med. 2012;30(6):496–506. doi:10. 1055/S-0032-1328878.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kiddy DS, Sharp PS, White DM, et al. Differences in clinical and endocrine features between obese and non-obese subjects with polycystic ovary syndrome: an analysis of 263 consecutive cases. Clin Endocrinol (Oxf). 1990;32(2):213–220.

    Article  CAS  Google Scholar 

  6. Brewer CJ, Balen AH. The adverse effects of obesity on concep-tion and implantation. Reproduction. 2010;140(3):347–364. doi: 10.1530/REP-09-0568.

    Article  CAS  PubMed  Google Scholar 

  7. Dupont J, Pollet-Villard X, Reverchon M, Mellouk N, Levy R. Adipokines in human reproduction. Horm Mol Biol Clin Investig. 2015;24(1):11–24. doi:10.1515/hmbci-2015-0034.

    CAS  PubMed  Google Scholar 

  8. Legro RS. Type 2 diabetes and polycystic ovary syndrome. Fertil Steril. 2006;86(suppl 1):S16–17. doi:10.1016/j.fertnstert.2006.04. 010

    Article  PubMed  Google Scholar 

  9. Apridonidze T, Essah PA, Iuorno MJ, Nestler JE. Prevalence and characteristics of the metabolic syndrome in women with polycystic ovary syndrome. J Clin Endocrinol Metab. 2005;90(4): 1929–1935. doi:10.1210/jc.2004-1045.

    Article  CAS  PubMed  Google Scholar 

  10. Ciampelli M, Fulghesu AM, Cucinelli F, et al. Heterogeneity in beta cell activity, hepatic insulin clearance and peripheral insulin sensitivity in women with polycystic ovary syndrome. Hum Reprod. 1997;12(9): 1897–1901.

    Article  CAS  PubMed  Google Scholar 

  11. Barber TM, McCarthy MI, Wass JA, Franks S. Obesity and polycystic ovary syndrome. Clin Endocrinol (Oxf). 2006;65(2): 137–145. doi:10.1111/j.l365-2265.2006.02587.x.

    Article  CAS  Google Scholar 

  12. Pasquali R, Gambineri A, Pagotto U. The impact of obesity on reproduction in women with polycystic ovary syndrome. BJOG. 2006; 113(10): 1148–1159. doi: 10.1111/j. 1471-0528.2006. 00990.x.

    Article  CAS  PubMed  Google Scholar 

  13. Lord J, Wilkin T. Polycystic ovary syndrome and fat distribution: the central issue? Hum Fertil (Camb). 2002;5(2):67–71.

    Article  Google Scholar 

  14. Pasquali R, Pelusi C, Genghini S, Cacciari M, Gambineri A. Obesity and reproductive disorders in women. Hum Reprod Update. 2003;9(4):359–372.

    Article  PubMed  Google Scholar 

  15. Barber TM, Bennett AJ, Groves CJ, et al. Association of variants in the fat mass and obesity associated (FTO) gene with polycystic ovary syndrome. Diabetologia. 2008;51(7):1153–1158. doi:10. 1007/s00125-008-1028-6.

    Article  CAS  PubMed  Google Scholar 

  16. Attaoua R, Ait El Mkadem S, Radian S, et al. FTO gene associates to metabolic syndrome in women with polycystic ovary syndrome. Biochem Biophys Res Commun. 2008;373(2):230–234. doi:10.1016/j.bbrc.2008.06.039.

    Article  CAS  PubMed  Google Scholar 

  17. Yan Q, Hong J, Gu W, Zhang Y, et al. Association of the common rs9939609 variant of FTO gene with polycystic ovary syndrome in Chinese women. Endocrine. 2009;36(3):377–382. doi:10.1007/ S12020-009-9257-0.

    Article  CAS  PubMed  Google Scholar 

  18. Tan S, Scherag A, Janssen OE, et al. Large effects on body mass index and insulin resistance of fat mass and obesity associated gene (FTO) variants in patients with polycystic ovary syndrome (PCOS). BMC Med Genet. 2010;11:12. doi:10.1186/1471-2350-11-12.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Kowalska I, Malecki MT, Straczkowski M, et al. The FTO gene modifies weight, fat mass and insulin sensitivity in women with polycystic ovary syndrome, where its role may be larger than in other phenotypes. Diabetes Metab. 2009;35(4):328–331. doi:10. 1016/j.diabet.2009.03.004.

    Article  CAS  PubMed  Google Scholar 

  20. Kosova G, Urbanek M. Genetics of the polycystic ovary syndrome. Mol Cell Endocrinol. 2013;373(1–2):29–38. doi:10.1016/j.mce.2012.10.009.

    Article  CAS  PubMed  Google Scholar 

  21. Ewens KG, Jones MR, Ankener W, et al. Type 2 diabetes susceptibility single-nucleotide polymorphisms are not associated with polycystic ovary syndrome. Fertil Steril. 2011;95(8):2538–2541. el-6. doi:10.1016/j.fertnstert.2011.02.050.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Moran LJ, Hutchison SK, Norman RJ, Teede HJ. Lifestyle changes in women with polycystic ovary syndrome. Cochrane Database Syst Rev. 2011;(7):CD007506. doi:10.1002/14651858.CD007506.

  23. Robinson S, Chan SP, Spacey S, Anyaoku V, Johnston DG, Franks S. Postprandial thermogenesis is reduced in polycystic ovary syndrome and is associated with increased insulin resis-tance. Clin Endocrinol (OxJ). 1992;36(6):537–543.

    Article  CAS  Google Scholar 

  24. Segal KR, Dunaif A. Resting metabolic rate and postprandial thermogenesis in polycystic ovarian syndrome. Int J Obes. 1990;14(7):559–567.

    CAS  PubMed  Google Scholar 

  25. Douglas CC, Norris LE, Oster RA, Darnell BE, Azziz R, Gower BA. Difference in dietary intake between women with polycystic ovary syndrome and healthy controls. Fertil Steril. 2006;86(2): 411–417. doi:10.1016/j.fertnstert.2005.12.054.

    Article  PubMed  Google Scholar 

  26. Wild RA, Painter PC, Coulson PB, Carruth KB, Ranney GB. Lipoprotein lipid concentrations and cardiovascular risk in women with polycystic ovary syndrome. J Clin Endocrinol Metab. 1985;61(5):946–951. doi:10.1210/jcem-61-5-946.

    Article  CAS  PubMed  Google Scholar 

  27. Moran LJ, Noakes M, Clifton PM, et al. Ghrelin and measures of satiety are altered in polycystic ovary syndrome but not differentially affected by diet composition. J Clin Endocrinol Metab. 2004;89(7):3337–3344. doi:10.1210/jc.2003-031583.

    Article  CAS  PubMed  Google Scholar 

  28. Hirschberg AL, Naessen S, Stridsberg M, Bystrom B, Holtet J. Impaired cholecystokinin secretion and disturbed appetite regulation in women with polycystic ovary syndrome. Gynecol Endocrinol. 2004;19(2):79–87.

    Article  CAS  PubMed  Google Scholar 

  29. Sobrino Crespo C, Perianes Cachero A, Puebla Jimenez L, Barrios V, Arilla Ferreiro E. Peptides and food intake. Front Endocrinol (Lausanne). 2014;5:58. doi:10.3389/fendo.2014.00058.

    Article  Google Scholar 

  30. Komatsu M, Takei M, Ishii H, Sato Y. Glucose-stimulated insulin secretion: a newer perspective. J Diabetes Investig. 2013;4(6): 511–516. doi:10.1111/jdi.12094.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Chandra R, Liddle RA. Modulation of pancreatic exocrine and endocrine secretion. Curr Opin Gastroenterol. 2013;29(5): 517–522. doi:10.1097/MOG.0b013e3283639326.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Benoit SC, Clegg DJ, Seeley RJ, Woods SC. Insulin and leptin as adiposity signals. Recent Prog Horm Res. 2004;59:267-285.

    Article  CAS  PubMed  Google Scholar 

  33. Baura GD, Foster DM, Porte D Jr, Kahn SE, et al. Saturable transport of insulin from plasma into the central nervous system of dogs in vivo. A mechanism for regulated insulin delivery to the brain. J Clin Invest. 1993;92(4):1824–1830. doi:10.1172/ JCI116773.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Banks WA, Jaspan JB, Kastin AJ. Selective, physiological transport of insulin across the blood-brain barrier: novel demonstration by species-specific radioimmunoassays. Peptides. 1997;18(8): 1257–1262.

    Article  CAS  PubMed  Google Scholar 

  35. Strubbe JH, Porte D Jr, Woods SC. Insulin responses and glucose levels in plasma and cerebrospinal fluid during fasting and refeeding in the rat. Physiol Behav. 1988;44(2):205–208.

    Article  CAS  PubMed  Google Scholar 

  36. Schulingkamp RJ, Pagano TC, Hung D, Raffa RB. Insulin receptors and insulin action in the brain: review and clinical implications. Neurosci Biobehav Rev. 2000;24(8):855–872.

    Article  CAS  PubMed  Google Scholar 

  37. Woods SC, Lotter EC, McKay LD, Porte D Jr. Chronic intracerebroventricular infusion of insulin reduces food intake and body weight of baboons. Nature. 1979; 282(5738):503–505.

    Article  CAS  PubMed  Google Scholar 

  38. Foster LA, Ames NK, Emery RS. Food intake and serum insulin responses to intraventricular infusions of insulin and IGF-I. Physiol Behav. 1991;50(4):745–749.

    Article  CAS  PubMed  Google Scholar 

  39. Briining JC, Gautam D, Burks DJ, et al. Role of brain insulin receptor in control of body weight and reproduction. Science. 2000;289(5487):2122–2125.

    Article  Google Scholar 

  40. Obici S, Zhang BB, Karkanias G, Rossetti L. Hypothalamic insulin signaling is required for inhibition of glucose production. Nat Med. 2002;8(12):1376–1382.

    Article  CAS  PubMed  Google Scholar 

  41. Kahn CR. The molecular mechanism of insulin action. Annu Rev Med. 1985;36:429-451. doi:10.1146/annurev.me.36.020185.002241.

    Article  CAS  PubMed  Google Scholar 

  42. Seaquist ER, Damberg GS, Tkac I, Gruetter R. The effect of insulin on in vivo cerebral glucose concentrations and rates of glucose transport/metabolism in humans. Diabetes. 2001;50(10): 2203–2209.

    Article  CAS  PubMed  Google Scholar 

  43. Plum L, Schubert M, Briining JC. The role of insulin receptor signaling in the brain. Trends Endocrinol Metab. 2005;16(2): 59–65. doi:10.1016/j.tem.2005.01.008.

    Article  CAS  PubMed  Google Scholar 

  44. Anthony K, Reed LJ, Dunn JT, et al. Attenuation of insulin-evoked responses in brain networks controlling appetite and reward in insulin resistance: the cerebral basis for impaired control of food intake in metabolic syndrome? Diabetes. 2006; 55(11):2986–2992. doi:10.2337/db06-0376.

    Article  CAS  PubMed  Google Scholar 

  45. Tschritter O, Preissl H, Hennige AM, et al. The cerebrocortical response to hyperinsulinemia is reduced in overweight humans: a magnetoencephalographic study. Proc Natl Acad Sci USA. 2006; 103(32):12103–12108. doi:10.1073/pnas.0604404103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Pagotto U. Where does insulin resistance start? The brain. Diabetes Care. 2009;32(suppl 2):S174–S177. doi:10.2337/dc09-S305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Vidarsdottir S, Smeets PA, Eichelsheim DL, et al. Glucose ingestion fails to inhibit hypothalamic neuronal activity inpatients with type 2 diabetes. Diabetes. 2007;56(10):2547–2550. doi:10.2337/ db07-0193.

    Article  CAS  PubMed  Google Scholar 

  48. Tschritter O, Preissl H, Hennige AM, et al. High cerebral insulin sensitivity is associated with loss of body fat during lifestyle intervention. Diabetologia. 2011;55(1): 175–182. doi:10.1007/s00125-011-2309-z.

    Article  PubMed  CAS  Google Scholar 

  49. Kullmann S, Heni M, Fritsche A, Preissl H. Insulin action in the human brain: evidence from neuroimaging studies. J Neuroendocrinal. 2015;27(6):419–423. doi:10.1111/jne.l2254.

    Article  CAS  Google Scholar 

  50. Tschritter O, Preissl H, Hennige AM, et al. The insulin effect on cerebrocortical theta activity is associated with serum concentrations of saturated nonesterified Fatty acids. J Clin Endocrinol Metab. 2009;94(11):4600–4607. doi:10.1210/jc.2009-0469.

    Article  CAS  PubMed  Google Scholar 

  51. Van Vugt DA, Krzemien A, Alsaadi H, Frank TC, Reid RL. Glucose-induced inhibition of the appetitive brain response to visual food cues in polycystic ovary syndrome patients. Brain Res. 2014;1558:44–56. doi:10.1016/j.brainres.2014.02.037.

    Article  PubMed  CAS  Google Scholar 

  52. Meier U, Gressner AM. Endocrine regulation of energy metabolism: review of pathobiochemical and clinical chemical aspects of leptin, ghrelin, adiponectin, resistin. Clin Chem. 2004;50(9): 1511–1525. doi:10.1373/clinchem.2004.032482.

    Article  CAS  PubMed  Google Scholar 

  53. Morris DL, Rui L. Recent advances in understanding leptin signaling and leptin resistance. Am J Physiol Endocrinol Metab. 2009;297(6):E1247–E1259. doi:10.1152/ajpendo.00274.2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Bluher S, Mantzoros CS. Leptin in humans: lessons from transla-tional research. Am J Clin Nutr. 2009;89(3):991S–997S. doi:10. 3945/ajcn.2008.26788E.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Frisch RE. Pubertal adipose tissue: is it necessary for normal sexual maturation? Evidence from the rat and human female. Fed Proc. 1980;39(7):2395–2400.

    CAS  PubMed  Google Scholar 

  56. Myers MG, Leibel RL, Seeley RJ, Schwartz MW. Obesity and leptin resistance: distinguishing cause from effect. Trends Endocrinol Metab. 2010;21(11):643–651. doi:10.1016/j.tem.2010.08. 002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Budak E, Fernandez Sanchez M, Bellver J, Cervero A, Simon C, Pellicer A. Interactions of the hormones leptin, ghrelin, adiponectin, resistin, and PYY3-36 with the reproductive system. Fertil Steril. 2006;85(6):1563–1581. doi:10.1016/j.fertnstert.2005.09. 065.

    Article  CAS  PubMed  Google Scholar 

  58. Kieffer TJ, Heller RS, Leech CA, Holz GG, Habener JF. Leptin suppression of insulin secretion by the activation of ATP-sensitive K+ channels in pancreatic beta-cells. Diabetes. 1997; 46(6):1087–1093.

    Article  CAS  PubMed  Google Scholar 

  59. Wang Q, Guo T, Tao Y, Song Y, Huang W. Association between serum adipocyte factor level and insulin resistance in polycystic ovarian syndrome. Gynecol Endocrinol. 2011;27(11):931–934. doi: 10.3109/09513590.2011.569597.

    Article  CAS  PubMed  Google Scholar 

  60. Casabiell X, Pineiro V, Vega F, De La Cruz LF, Dieguez C, Casanueva FF. Leptin, reproduction and sex steroids. Pituitary. 2001;4(1-2):93–99.

    Article  CAS  PubMed  Google Scholar 

  61. Brzechffa PR, Jakimiuk AJ, Agarwal SK, et al. Serum immunoreactive leptin concentrations in women with polycystic ovary syndrome. J Clin Endocrinol Metab. 1996;81(11)9:4166–4169. doi:10.1210/jcem.81.11.8923878.

    CAS  PubMed  Google Scholar 

  62. Chapman IM, Wittert GA, Norman RJ. Circulating leptin concentrations in polycystic ovary syndrome: relation to anthropometric and metabolic parameters. Clin Endocrinol (Oxf). 1997;46(2): 175–181.

    Article  CAS  Google Scholar 

  63. Rouru J, Anttila L, Koskinen P, et al. Serum leptin concentrations in women with polycystic ovary syndrome. J Clin Endocrinol Metab. 1997;82(6):1697–1700. doi:10.1210/jcem.82.6.3996.

    Article  CAS  PubMed  Google Scholar 

  64. Gennarelli G, Holte J, Wide L, Berne C, Lithell H. Is there a role for leptin in the endocrine and metabolic aberrations of polycystic ovary syndrome? Hum Reprod. 1998;13(3):535–541.

    Article  CAS  PubMed  Google Scholar 

  65. Telli MH, Yildirim M, Noyan V. Serum leptin levels in patients with polycystic ovary syndrome. Fertil Steril. 2002;77(5): 932–935.

    Article  PubMed  Google Scholar 

  66. Caro JF. Leptin is normal in PCOS, an editorial about three “negative” papers. J Clin Endocrinol Metab. 1997;82(6): 1685–1686 doi:10.1210/jcem.82.6.4065.

    CAS  PubMed  Google Scholar 

  67. Fain JN, Madan AK, Hiler ML, Cheema P, Bahouth SW. Comparison of the release of adipokines by adipose tissue, adipose tissue matrix, and adipocytes from visceral and subcutaneous abdominal adipose tissues of obese humans. Endocrinology. 2004;145(5):2273–2282doi:10.1210/en.2003-1336.

    Article  CAS  PubMed  Google Scholar 

  68. You T, Yang R, Lyles MF, et al. Abdominal adipose tissue cytokine gene expression: relationship to obesity and metabolic risk factors. Am J Physiol Endocrinol Metab. 2005;288(4): E741–E747. doi:10.1152/ajpendo.00419.2004.

    Article  CAS  PubMed  Google Scholar 

  69. Remsberg KE, Talbott EO, Zborowski JV, Evans RW, McHugh-Pemu K. Evidence for competing effects of body mass, hyperin-sulinemia, insulin resistance, and androgens on leptin levels among lean, overweight, and obese women with polycystic ovary syndrome. Fertil Steril. 2002;78(3):479–486.

    Article  PubMed  Google Scholar 

  70. Demerath EW, Towne B, Wisemandle W, Blangero J, Chumlea WC, Siervogel RM. Serum leptin concentration, body composi-tion, and gonadal hormones during puberty. Int J Obes Relat Metab Disord. 1999;23(7):678–685.

    Article  CAS  PubMed  Google Scholar 

  71. Roemmich JN, Clark PA, Berr SS, Mai V, et al. Gender differences in leptin levels during puberty are related to the subcutaneous fat depot and sex steroids. Am J Physiol. 1998;275(3 pt 1): E543–E551.

    CAS  PubMed  Google Scholar 

  72. Carmina E, Ferin M, Gonzalez F, Lobo RA. Evidence that insulin and androgens may participate in the regulation of serum leptin levels in women. Fertil Steril. 1999;72(5):926–931.

    Article  CAS  PubMed  Google Scholar 

  73. Sir-Petermann T, Piwonka V, Perez F, et al. Are circulating leptin and luteinizing hormone synchronized in patients with polycystic ovary syndrome? Hum Reprod. 1999;14(6):1435–1439.

    Article  CAS  PubMed  Google Scholar 

  74. Erturk E, Kuru N, Savci V, Tuncel E, Ersoy C, Imamoglu S. Serum leptin levels correlate with obesity parameters but not with hyperinsulinism in women with polycystic ovary syndrome. Fertil Steril. 2004;82(5):1364–1368. doi:10.1016/j.fertnstert.2004.04.049.

    Article  PubMed  Google Scholar 

  75. Tschop M, Smiley DL, Heiman ML. Ghrelin induces adiposity in rodents. Nature. 2000;407(6806):908–913. doi:10.1038/ 35038090.

    Article  CAS  PubMed  Google Scholar 

  76. Peters A, Schweiger U, Fruhwald-Schultes B, Born J, Fehm HL. The neuroendocrine control of glucose allocation. Exp Clin Endocrinol Diabetes. 2002;110(5):199–211. doi:10.1055/s-2002-33068.

    Article  CAS  PubMed  Google Scholar 

  77. Ludwig AK, Weiss JM, Tauchert S, et al. Influence of hypo- and hyperglycaemia on plasma leptin concentrations in healthy women and in women with polycystic ovary syndrome. Hum Reprod. 2007;22(6):1555–1561. doi:10.1093/humrep/dem041.

    Article  CAS  PubMed  Google Scholar 

  78. Morin-Papunen LC, Koivunen RM, Tomas C, et al. Decreased serum leptin concentrations during metformin therapy in obese women with polycystic ovary syndrome. J Clin Endocrinol Metab. 1998;83(7):2566–2568. doi: 10.1210/jcem.83.7.4944.

    Article  CAS  PubMed  Google Scholar 

  79. Pasquali R, Gambineri A, Biscotti D, et al. Effect of long-term treatment with metformin added to hypocaloric diet on body composition, fat distribution, and androgen and insulin levels in abdominally obese women with and without the polycystic ovary syndrome. J Clin Endocrinol Metab. 2000;85(8):2767–2774 doi: 10.1210/jcem.85.8.6738.

    Article  CAS  PubMed  Google Scholar 

  80. Koivunen RM, Morin-Papunen LC, Ruokonen A, Tapanainen JS, Martikainen HK. Ovarian steroidogenic response to human chor-ionic gonadotrophin in obese women with polycystic ovary syn-drome: effect of metformin. Hum Reprod. 2001;16(12): 2546–2551.

    Article  CAS  PubMed  Google Scholar 

  81. Romualdi D, Campagna G, Selvaggi L Jr, et al. Metformin treatment does not affect total leptin levels and free leptin index in obese patients with polycystic ovary syndrome. Fertil Steril. 2008;89(5):1273–1276. doi:10.1016/j.fertnstert.2007.05.004.

    Article  CAS  PubMed  Google Scholar 

  82. Maciel GA, Soares Junior JM, Alves da Motta EL, et al. Nonobese women with polycystic ovary syndrome respond better than obese women to treatment with metformin. Fertil Steril. 2004;81(2): 355–360. doi:10.1016/j.fertnstert.2003.08.012.

    Article  CAS  PubMed  Google Scholar 

  83. Mantzoros CS, Dunaif A, Flier JS. Leptin concentrations in the polycystic ovary syndrome. J Clin Endocrinol Metab. 1997;82(6): 1687–1691. doi:10.1210/jcem.82.6.4017

    CAS  PubMed  Google Scholar 

  84. Zheng Z, Li M, Lin Y, Ma Y. Effect of rosiglitazone on insulin resistance and hyperandrogenism in polycystic ovary syndrome. Zhonghua Fu Chan Ke Za Zhi. 2002;37(5):271–273.

    PubMed  Google Scholar 

  85. Belli SH, Graffigna MN, Oneto A, Otero P, Schurman L, Levalle OA. Effect of rosiglitazone on insulin resistance, growth factors, and reproductive disturbances in women with polycystic ovary syndrome. Fertil Steril. 2004;81(3):624–629. doi:10.1016/j.fertn-stert.2003.08.024.

    Article  CAS  PubMed  Google Scholar 

  86. Krassas GE, Kaltsas TT, Pontikides N, et al. Leptin levels in women with polycystic ovary syndrome before and after treatment with diazoxide. Eur J Endocrinol. 1998;139(2):184–189.

    Article  CAS  PubMed  Google Scholar 

  87. Gerli S, Mignosa M, Di Renzo GC. Effects of inositol on ovarian function and metabolic factors in women with PCOS: a rando-mized double blind placebo-controlled trial. Eur Rev Med Pharmacol Sci. 2003;7(6):151–159.

    CAS  PubMed  Google Scholar 

  88. Sinha MK, Sturis J, Ohannesian J, et al. Ultradian oscillations of leptin secretion in humans. Biochem Biophys Res Commun. 1996; 228(3):733–738.doi:10.1006/bbrc.1996.1724.

    Article  CAS  PubMed  Google Scholar 

  89. Lammert A, Kiess W, Bottner A, Glasow A, Kratzsch J. Soluble leptin receptor represents the main leptin binding activity in human blood. Biochem Biophys Res Commun. 2001;283(4): 982–988. doi:10.1006/bbrc.2001.4885.

    Article  CAS  PubMed  Google Scholar 

  90. Chen MD, Song YM. Effect of lipid infusion on plasma leptin and neuropeptide Y levels in women. Mayo Clin Proc. 2002 Dec; 77(12):1391–1392, 1395. doi: 10.4065/77.12.1391-a.

    Article  PubMed  Google Scholar 

  91. Arch JR. Central regulation of energy balance: inputs, outputs and leptin resistance. Proc Nutr Soc. 2005;64(1):39–46.

    Article  CAS  PubMed  Google Scholar 

  92. Hahn S, Haselhorst U, Quadbeck B, Tan S, et al. Decreased solu-ble leptin receptor levels in women with polycystic ovary syndrome. Eur J Endocrinol. 2006;154(2):287–294. doi:10.1530/eje.1.02078.

    Article  CAS  PubMed  Google Scholar 

  93. Oksanen L, Tiitinen A, Kaprio J, Koistinen HA, Karonen S, Kontula K. No evidence for mutations of the leptin or leptin receptor genes in women with polycystic ovary syndrome. Mol Hum Reprod. 2000;6(10):873–876.

    Article  CAS  PubMed  Google Scholar 

  94. Ogawa Y, Masuzaki H, Hosoda K, et al. Increased glucose metabolism and insulin sensitivity in transgenic skinny mice over-expressing leptin. Diabetes. 1999;48(9):1822–1829.

    Article  CAS  PubMed  Google Scholar 

  95. Carmina E, Chu MC, Moran C, et al. Subcutaneous and omental fat expression of adiponectin and leptin in women with polycystic ovary syndrome. Fertil Steril. 2008;89(3):642–648. doi:10.1016/j.fertnstert.2007.03.085.

    Article  CAS  PubMed  Google Scholar 

  96. Wang L, Li S, Zhao A, et al. The expression of sex steroid synthesis and inactivation enzymes in subcutaneous adipose tissue of PCOS patients. J Steroid Biochem Mol Biol. 2012;132(1–2): 120–126. doi:10.1016/j.jsbmb.2012.02.003.

    Article  CAS  PubMed  Google Scholar 

  97. Svendsen PF, Christiansen M, Hedley PL, Nilas L, Pedersen SB, Madsbad S. Adipose expression of adipocytokines in women with polycystic ovary syndrome. Fertil Steril. 2012;98(1): 235–241. doi: 10.1016/j.fertnstert.2012.03.056

    Article  CAS  PubMed  Google Scholar 

  98. Comninos AN, Jayasena CN, Dhillo WS. The relationship between gut and adipose hormones, and reproduction. Hum Reprod Update. 2014;20(2):153–174. doi:10.1093/humupd/ dmt033.

    Article  CAS  PubMed  Google Scholar 

  99. Higgins SC, Gueorguiev M, Korbonits M. Ghrelin, the peripheral hunger hormone. Ann Med. 2007;39(2): 116–136. doi: 10.1080/07853890601149179.

    Article  CAS  PubMed  Google Scholar 

  100. Kojima M, Hosoda H, Matsuo H, Kangawa K. Ghrelin: discovery of the natural endogenous ligand for the growth hormone secretagogue receptor. Trends Endocrinol Metab 2001;12(3): 118–122.

    Article  CAS  PubMed  Google Scholar 

  101. Schofl C, Horn R, Schill T, Schlosser HW, Milller MJ, Brabant G. Circulating ghrelin levels in patients with polycystic ovary syndrome. J Clin Endocrinol Metab. 2002;87(10):4607–4610. doi:10.1210/jc.2002-020505.

    Article  CAS  PubMed  Google Scholar 

  102. Orio F Jr, Lucidi P, Palomba S, et al. Circulating ghrelin con-centrations in the polycystic ovary syndrome. J Clin Endocrinol Metab. 2003;88(2):942–945. doi:10.1210/jc.2002-021451.

    Article  CAS  PubMed  Google Scholar 

  103. Wasko R, Komarowska H, Warenik-Szymankiewicz A, Sowihski J. Elevated ghrelin plasma levels in patients with polycystic ovary syndrome. Horm Metab Res. 2004;36(3): 170–173. doi:10.1055/s-2004-814341.

    Article  CAS  PubMed  Google Scholar 

  104. Huber-Buchholz MM, Carey DG, Norman RJ. Restoration of reproductive potential by lifestyle modification in obese poly-cystic ovary syndrome: role of insulin sensitivity and luteinizing hormone. JClin Endocrinol Metab. 1999;84(4): 1470–1474. doi: 10.1210/jcem.84.4.5596.

    CAS  Google Scholar 

  105. Panidis D, Asteriadis C, Georgopoulos NA, et al. Decreased active, total and altered active to total ghrelin ratio in normal weight women with the more severe form of polycystic ovary syndrome. Eur J Obstet Gynecol Reprod Biol. 2010;149(2): 170–174. doi: 10.1016/j.ejogrb.2009.12.019.

    Article  CAS  PubMed  Google Scholar 

  106. Barber TM, Casanueva FF, Karpe F, et al. Ghrelin levels are suppressed and show a blunted response to oral glucose in women with polycystic ovary syndrome. Eur J Endocrinol. 2008;158(4):511–516. doi:10.1530/EJE-07-0683.

    Article  CAS  PubMed  Google Scholar 

  107. Pagotto U, Gambineri A, Vicennati V, Heiman ML, Tschop M, Pasquali R. Plasma ghrelin, obesity, and the polycystic ovary syndrome: correlation with insulin resistance and androgen levels. J Clin Endocrinol Metab. 2002;87(12):5625–5629. doi:10. 1210/jc.2002-020776.

    Article  CAS  PubMed  Google Scholar 

  108. Gambineri A, Pagotto U, Tschop M, et al. Anti-androgen treatment increases circulating ghrelin levels in obese women with polycystic ovary syndrome. J Endocrinol Invest. 2003;26(7): 629–634. doi:10.1007/BF03347020.

    Article  CAS  PubMed  Google Scholar 

  109. Wang K, Wang L, Zhao Y, Shi Y, Wang L, Chen ZJ. No association of the Arg51Gln and Leu72Met polymorphisms of the ghrelin gene and polycystic ovary syndrome. Hum Reprod. 2009;24(2):485–490. doi:10.1093/humrep/ den430.

    Article  CAS  PubMed  Google Scholar 

  110. Kalra SP, Kalra PS. NPY and cohorts in regulating appetite, obesity and metabolic syndrome: beneficial effects of gene therapy. Neuropeptides. 2004;38(4):201–211. doi:10.1016/j.npep.2004.06.003.

    Article  CAS  PubMed  Google Scholar 

  111. Arora S, Anubhuti. Role of neuropeptides in appetite regulation and obesity-a review. Neuropeptides. 2006;40(6):375–401. doi: 10.1016/j.npep.2006.07.001.

    Article  CAS  PubMed  Google Scholar 

  112. Kalra SP, Dube MG, Fournier A, Kalra PS. Structure function analysis of stimulation of food intake by neuropeptide Y: effects of receptor agonists. Physiol Behav. 1991;50(1):5–9.

    Article  CAS  PubMed  Google Scholar 

  113. Baranowska B, Radzikowska M, Wasilewska-Dziubinska E, Kaplihski A, Roguski K, Plonowski A. Neuropeptide Y, leptin, galanin and insulin in women with polycystic ovary syndrome. Gynecol Endocrinol. 1999;13(5):344–351. doi:10.3109/ 09513599909167578

    Article  CAS  PubMed  Google Scholar 

  114. Gennarelli G, Holte J, Stridsberg M, Niklasson F, Berne C, Backstrom T. The counterregulatory response to hypoglycaemia in women with the polycystic ovary syndrome. Clin Endocrinol (Oxf). 1997;46(2):167–174. doi:10.3109/09513599909167578.

    Article  CAS  Google Scholar 

  115. Romualdi D, De Marinis L, Campagna G, Proto C, Lanzone A, Guido M. Alteration of ghrelin-neuropeptide Y network in obese patients with polycystic ovary syndrome: role of hyperinsulin-ism. Clin Endocrinol (Oxf). 2008;69(4):562–567 doi:10.1111/j. 1365-2265.2008.03204.x.

    Article  CAS  Google Scholar 

  116. Kalra S. Is neuropeptide Y a naturally occurring appetite transducer? Curr Opin Endocrinol Diab. 1996;3(2):157–163.

    Article  CAS  Google Scholar 

  117. Kalra S, Dube MG, Xu B, Kalra SP. Increased receptor sensitivity to neuropeptide Y in the hypothalamus may underlie transient hyperphagia and body weight gain. Regul Pept. 1997; 72(2–3):121–130.

    Article  CAS  PubMed  Google Scholar 

  118. Kalra PS, Dube MG, Xu B, Farmerie WG, Kalra SP. Neuropeptide Y (NPY) Yl receptor mRNA is upregulated in association with transient hyperphagia and body weight gain: evidence for a hypothalamic site for concurrent development of leptin resis-tance. J Neuroendocrinal. 1998;10(1):43–49.

    Article  CAS  Google Scholar 

  119. Levens N, Feletou M, Galizzi JP, et al. NPY effects on food intake and metabolism. Handb Exp Pharmacol. 2004;162:283-325.

    Article  CAS  Google Scholar 

  120. Hansen MJ, Jovanovska V, Morris MJ. Adaptive responses in hypothalamic neuropeptide Y in the face of prolonged high-fat feeding in the rat. JNeurochem. 2004;88(4):909–916.

    Article  CAS  Google Scholar 

  121. Sato I, Arima H, Ozaki N, et al. Insulin inhibits neuropeptide Y gene expression in the arcuate nucleus through GABAergic sys-tems. JNeurosci. 2005;25(38):8657–8664.doi:10.1523/JNEUR-OSCI.2739-05.2005.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Immediata Valentina MD.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Daniela, R., Valentina, I., Simona, D. et al. Neuroendocrine Regulation of Food Intake in Polycystic Ovary Syndrome. Reprod. Sci. 25, 644–653 (2018). https://doi.org/10.1177/1933719117728803

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719117728803

Keywords

Navigation