Skip to main content
Log in

Tropomyosin Receptor Kinase B Agonist, 7,8-Dihydroxyflavone, Improves Mitochondrial Respiration in Placentas From Obese Women

  • Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Maternal obesity negatively impacts the placenta, being associated with increased inflammation, decreased mitochondrial respiration, decreased expression of brain-derived neurotrophic factor (BDNF), and its receptor, tropomyosin receptor kinase B (TRKB). TRKB induction by 7,8-dihydroxyflavone (7,8-DHF) improves energy expenditure in an obesity animal model. We hypothesized that TRKB activation would improve mitochondrial respiration in trophoblasts from placentas of obese women. Placentas were collected from lean (pre-pregnancy BMI < 25) and obese (pre-pregnancy BMI > 30) women at term following cesarean section delivery without labor. Cytotrophoblasts were isolated and plated, permitting syncytialization. At 72 hours, syncytiotrophoblasts (STs) were treated for 1 hour with 7,8-DHF (10 nM–10 M), TRKB antagonists (ANA-12 (10 nM–1 M), Cyclotraxin B (1 nM-1M)), or vehicle. Mitochondrial respiration was measured using the XF24 Extracellular Flux Analyzer. TRKB, MAPK, and PGC1α were measured using Western blotting. Maternal obesity was associated with decreased mitochondrial respiration in STs; however, 7,8-DHF increased basal, ATP-coupled, maximal, spare capacity, and nonmitochondrial respiration. A 10 μM dose of 7,8-DHF reduced spare capacity in STs from lean women, with no effect on other respiration parameters. 7,8-DHF had no effect on TRKB phosphorylation; however, there was a concentration-dependent decrease of p38 MAPK phosphorylation and increase of PGC1μ in STs from obese, but not in lean women. TRKB antagonism attenuated ATP-coupled respiration, maximal respiration, and spare capacity in STs from lean and obese women. 7,8-DHF improves mitochondrial respiration in STs from obese women, suggesting that the obese phenotype in the placenta can be rescued by TRKB activation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Flegal KM, Kruszon-Moran D, Carroll MD, Fryar CD, Ogden CL. Trends in obesity among adults in the United States, 2005 to 2014. JAMA. 2016;315(21):2284–2291.

    CAS  PubMed  Google Scholar 

  2. Bodnar LM, Catov JM, Klebanoff MA, Ness RB, Roberts JM. Prepregnancy body mass index and the occurrence of severe hypertensive disorders of pregnancy. Epidemiology. 2007;18(2): 234–239.

    PubMed  Google Scholar 

  3. Chu SY, Callaghan WM, Kim SY, et al. Maternal obesity and risk of gestational diabetes mellitus. Diabetes Care. 2007;30(8): 2070–2076.

    PubMed  Google Scholar 

  4. O’Brien TE, Ray JG, Chan WS. Maternal body mass index and the risk of preeclampsia: a systematic overview. Epidemiology. 2003;14(3):368–374.

    PubMed  Google Scholar 

  5. Chu SY, Kim SY, Lau J, et al. Maternal obesity and risk of stillbirth: a metaanalysis. Am J Obstet Gynecol. 2007;197(3): 223–228.

    PubMed  Google Scholar 

  6. Vasudevan C, Renfrew M, McGuire W. Fetal and perinatal consequences of maternal obesity. Arch Dis Child Fetal Neonatal Ed. 2011;96(5):F378–F382.

    PubMed  Google Scholar 

  7. Reece EA. Obesity, diabetes, and links to congenital defects: a review of the evidence and recommendations for intervention. J Matern Fetal Neonatal Med. 2008;21(3):173–180.

    PubMed  Google Scholar 

  8. Carter AM, Enders AC. Comparative aspects of trophoblast development and placentation. Reprod Biol Endocrinol. 2004;2:46.

    PubMed  PubMed Central  Google Scholar 

  9. Myatt L. Placental adaptive responses and fetal programming. J Physiol. 2006;572(pt 1):25–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Soleymanlou N, Jurisica I, Nevo O, et al. Molecular evidence of placental hypoxia in preeclampsia. J Clin Endocrinolo Metab. 2005;90(7):4299–4308.

    CAS  Google Scholar 

  11. Aye IL, Lager S, Ramirez VI, et al. Increasing maternal body mass index is associated with systemic inflammation in the mother and the activation of distinct placental inflammatory pathways. Biol Reprod. 2014;90(6):129.

    PubMed  PubMed Central  Google Scholar 

  12. Mele J, Muralimanoharan S, Maloyan A, Myatt L. Impaired mitochondrial function in human placenta with increased maternal adiposity. Am J Physiol Endocrinol Metab. 2014;307(5): E419–E425.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Muralimanoharan S, Guo C, Myatt L, Maloyan A. Sexual dimorphism in miR-210 expression and mitochondrial dysfunction in the placenta with maternal obesity. Int J Obes.(Load). 2015;39(8):1274–1281.

    CAS  Google Scholar 

  14. Barker DJ. The effect of nutrition of the fetus and neonate on cardiovascular disease in adult life. Proc Nutr Soc. 1992;51(2): 135–144.

    CAS  PubMed  Google Scholar 

  15. Barker DJ. Intrauterine programming of coronary heart disease and stroke. Acta Paediatr Suppl. 1997;423:178–182;discussion 183.

    CAS  PubMed  Google Scholar 

  16. Barker DJ, Gluckman PD, Robinson JS. Conference report: fetal origins of adult disease—report of the First International Study Group, Sydney, 29-30 October 1994. Placenta. 1995;16(3): 317–320.

    CAS  PubMed  Google Scholar 

  17. Challis JR, Sloboda D, Matthews SG, et al. The fetal placental hypothalamic-pituitary-adrenal (HPA) axis, parturition and post natal health. Mol Cell Endocrinol. 2001;185(1-2):135–144.

    CAS  PubMed  Google Scholar 

  18. Phillips DI, Jones A. Fetal programming of autonomic and HPA function: do people who were small babies have enhanced stress responses? J Physiol. 2006;572(pt 1):45–50.

    Google Scholar 

  19. Xiong F, Zhang L. Role of the hypothalamic-pituitary-adrenal axis in developmental programming of health and disease. Front Neuroendocrinol. 2013;34(1):27–46.

    CAS  PubMed  Google Scholar 

  20. Rivera HM, Christiansen KJ, Sullivan EL. The role of maternal obesity in the risk of neuropsychiatric disorders. Front Neurosci. 2015;9:194.

    PubMed  PubMed Central  Google Scholar 

  21. Sasaki A, Shinkawa O, Yoshinaga K. Placental corticotropinreleasing hormone may be a stimulator of maternal pituitary adrenocorticotropic hormone secretion in humans. J Clin Invest. 1989;84(6):1997–2001.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Odagiri E, Sherrell BJ, Mount CD, Nicholson WE, Orth DN. Human placental immunoreactive corticotropin, lipotropin, and beta-endorphin: evidence for a common precursor. Proc Nati AcadSci USA. 1979;76(4):2027–2031.

    CAS  Google Scholar 

  23. Ramamoorthy S, Leibach FH, Mahesh VB, Ganapathy V. Active transport of dopamine in human placental brush-border membrane vesicles. Am J Physio. 1992;262(5 pt 1):C1189–C1196.

    CAS  Google Scholar 

  24. Bonnin A, Goeden N, Chen K, et al. A transient placental source of serotonin for the fetal forebrain. Nature. 2011;472(7343): 347–350.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Bonnin A, Levitt P. Fetal, maternal, and placental sources of serotonin and new implications for developmental programming of the brain. Neuroscience. 2011;197:1–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Wu X, Xie C, Zhang Y, Fan Z, Yin Y, Blachier F. Glutamateglutamine cycle and exchange in the placenta-fetus unit during late pregnancy. Amino Acids. 2015;47(1):45–53.

    CAS  PubMed  Google Scholar 

  27. Garces MF, Sanchez E, Torres-Sierra AL, et al. Brain-derived neurotrophic factor is expressed in rat and human placenta and its serum levels are similarly regulated throughout pregnancy in both species. Clin Endocrinol (Oxf). 2014;81(1):141–151.

    CAS  Google Scholar 

  28. Prince CS, Maloyan A, Myatt L. Maternal obesity alters brain derived neurotrophic factor (BDNF) signaling in the placenta in a sexually dimorphic manner. Placenta. 2017;49:55–63.

    CAS  PubMed  Google Scholar 

  29. Phillips HS, Hains JM, Armanini M, Laramee GR, Johnson SA, Winslow JW. BDNF mRNA is decreased in the hippocampus of individuals with Alzheimer’s disease. Neuron. 1991;7(5):695–702.

    CAS  PubMed  Google Scholar 

  30. Yoshida T, Ishikawa M, Niitsu T, et al. Decreased serum levels of mature brain-derived neurotrophic factor (BDNF), but not its precursor proBDNF, in patients with major depressive disorder. PLoS One. 2012;7(8):e42676.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Mou Z, Hyde TM, Lipska BK, et al. Human obesity associated with an intronic SNP in the brain-derived neurotrophic factor locus. Cell Rep. 2015;13(6):1073–1080.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Lommatzsch M, Zingler D, Schuhbaeck K, et al. The impact of age, weight and gender on BDNF levels in human platelets and plasma. Neurobiol Aging. 2005;26(1):115–123.

    CAS  PubMed  Google Scholar 

  33. Markham A, Cameron I, Bains R, et al. Brain-derived neurotrophic factor-mediated effects on mitochondrial respiratory coupling and neuroprotection share the same molecular signalling pathways. EurJNeurosci. 2012;35(3):366–374.

    Google Scholar 

  34. Markham A, Cameron I, Franklin P, Spedding M. BDNF increases rat brain mitochondrial respiratory coupling at complex I, but not complex II. Eur J Neurosci. 2004;20(5):1189–1196.

    CAS  PubMed  Google Scholar 

  35. Fujita K, Tatsumi K, Kondoh E, et al. Differential expression and the anti-apoptotic effect of human placental neurotrophins and their receptors. Placenta. 2011;32(10):737–744.

    CAS  PubMed  Google Scholar 

  36. Lu B, Nagappan G, Guan X, Nathan PJ, Wren P. BDNF-based synaptic repair as a disease-modifying strategy for neurodegenerative diseases. Nat Rev Neurosci. 2013;14(6):401–416.

    CAS  PubMed  Google Scholar 

  37. Andero R, Daviu N, Escorihuela RM, Nadal R, Armario A. 7,8-dihydroxyflavone, a TRKB receptor agonist, blocks long-term spatial memory impairment caused by immobilization stress in rats. Hippocampus. 2012;22(3):399–408.

    CAS  PubMed  Google Scholar 

  38. Jang SW, Liu X, Yepes M, et al. A selective TRKB agonist with potent neurotrophic activities by 7,8-dihydroxyflavone. Proc Natl AcadSci USA. 2010;107(6):2687–2692.

    CAS  Google Scholar 

  39. Liu X, Obianyo O, Chan CB, et al. Biochemical and biophysical investigation of the brain-derived neurotrophic factor mimetic 7,8-dihydroxyflavone in the binding and activation of the TRKB receptor. J Biol Chem. 2014;289(40):27571–27584.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Agrawal R, Tyagi E, Vergnes L, Reue K, Gomez-Pinilla F. Coupling energy homeostasis with a mechanism to support plasticity in brain trauma. Biochim Biophys Acta. 2014;1842(4):535–546.

    CAS  PubMed  Google Scholar 

  41. Chan CB, Tse MC, Liu X, et al. Activation of muscular TRKB by its small molecular agonist 7,8-dihydroxyflavone sex-dependently regulates energy metabolism in diet-induced obese mice. Chem Biol. 2015;22(3):355–368.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Bax CM, Ryder TA, Mobberley MA, Tyms AS, Taylor DL, Bloxam DL. Ultrastructural changes and immunocytochemical analysis of human placental trophoblast during short-term culture. Placenta. 1989;10(2):179–194.

    CAS  PubMed  Google Scholar 

  43. Nicholls DG, Darley-Usmar VM, Wu M, Jensen PB, Rogers GW, Ferrick DA. Bioenergetic profile experiment using C2C12 myoblast cells. J Vis Exp. 2010;(46):e2511. D0I:10.3791/2511.

    Google Scholar 

  44. Muralimanoharan S, Maloyan A, Mele J, Guo C, Myatt LG, Myatt L. MIR-210 modulates mitochondrial respiration in placenta with preeclampsia. Placenta. 2012;33(10):816–823.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Maloyan A, Mele J, Muralimanohara B, Myatt L. Measurement of mitochondrial respiration in trophoblast culture. Placenta. 2012;33(5):456–458.

    CAS  PubMed  Google Scholar 

  46. HanBH, D’Costa A, Back SA, et al. BDNF blocks caspase-3 activation in neonatal hypoxia-ischemia. NeurobiolDis. 2000;7(1):38–53.

    CAS  Google Scholar 

  47. Nakagawa T, Tsuchida A, Itakura Y, et al. Brain-derived neurotrophic factor regulates glucose metabolism by modulating energy balance in diabetic mice. Diabetes. 2000;49(3):436–444.

    CAS  PubMed  Google Scholar 

  48. Chen J, Chua KW, Chua CC, et al. Antioxidant activity of 7,8-dihydroxyflavone provides neuroprotection against glutamate-induced toxicity. Neurosci Lett. 2011;499(3):181–185.

    CAS  PubMed  Google Scholar 

  49. Kernie SG, Liebl DJ, Parada LF. BDNF regulates eating behavior and locomotor activity in mice. EMBO J. 2000;19(6):1290–1300.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Cazorla M, Premont J, Mann A, Girard N, Kellendonk C, Rognan D. Identification of a low-molecular weight TRKB antagonist with anxiolytic and antidepressant activity in mice. J Clin Invest. 2011;121(5):1846–1857.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Cazorla M, Jouvenceau A, Rose C, et al. Cyclotraxin-B, the first highly potent and selective TRKB inhibitor, has anxiolytic properties in mice. PloS One. 2010;5(3):e9777.

    PubMed  PubMed Central  Google Scholar 

  52. Kaplan DR, Miller FD. Neurotrophin signal transduction in the nervous system. Curr Opin Neurobiol. 2000;10(3):381–391.

    CAS  PubMed  Google Scholar 

  53. Chen LW, Lin MW, Hsu CM. Different pathways leading to activation of extracellular signal-regulated kinase and p38 MAP kinase by formyl-methionyl-leucyl-phenylalanine or platelet activating factor in human neutrophils. J Biomed Sci. 2005;12(2): 311–319.

    CAS  PubMed  Google Scholar 

  54. Yang JM, Vassil AD, Hait WN. Activation of phospholipase C induces the expression of the multidrug resistance (MDR1) gene through the Raf-MAPK pathway. Mol Pharmacol. 2001;60(4): 674–680.

    CAS  PubMed  Google Scholar 

  55. McCubrey JA, Steelman LS, Chappell WH, et al. Roles of the Raf/MEK/ERK pathway in cell growth, malignant transformation and drug resistance. Biochim Biophys Acta. 2007;1773(8): 1263–1284.

    CAS  PubMed  Google Scholar 

  56. Barak Y, Nelson MC, Ong ES, et al. PPAR gamma is required for placental, cardiac, and adipose tissue development. Molr Cell. 1999;4(4):585–595.

    CAS  Google Scholar 

  57. Semple RK, Crowley VC, Sewter CP, et al. Expression of the thermogenic nuclear hormone receptor coactivator PGC-1alpha is reduced in the adipose tissue of morbidly obese subjects. Int J Obes Relat Metab Disord. 2004;28(1):176–179.

    CAS  PubMed  Google Scholar 

  58. Crunkhorn S, Dearie F, Mantzoros C, et al. Peroxisome proliferator activator receptor gamma coactivator-1 expression is reduced in obesity: potential pathogenic role of saturated fatty acids and p38 mitogen-activated protein kinase activation. J Biol Chem. 2007;282(21):15439–15450.

    CAS  PubMed  Google Scholar 

  59. Knutti D, Kressler D, Kralli A. Regulation of the transcriptional coactivator PGC-1 via MAPK-sensitive interaction with a repressor. Proc Natl Acad Sci USA. 2001;98(17):9713–9718.

    CAS  PubMed  Google Scholar 

  60. Fan M, Rhee J, St-Pierre J, et al. Suppression of mitochondrial respiration through recruitment of p160 myb binding protein to PGC-1alpha: modulation by p38 MAPK. Genes Dev. 2004;18(3): 278–289.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. LeBleu VS, O’Connell JT, Gonzalez Herrera KN, et al. PGC-1alpha mediates mitochondrial biogenesis and oxidative phos-phorylation in cancer cells to promote metastasis. Nat Cell Biol. 2014;16(10):992–1003.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Valle I, Alvarez-Barrientos A, ArzaE, Lamas S, Monsalve M. PGC-1alpha regulates the mitochondrial antioxidant defense system invascular endothelial cells. Cardiovasc Res. 2005;66(3):562–573.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Calais S. Prince PhD.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prince, C.S., Maloyan, A. & Myatt, L. Tropomyosin Receptor Kinase B Agonist, 7,8-Dihydroxyflavone, Improves Mitochondrial Respiration in Placentas From Obese Women. Reprod. Sci. 25, 452–462 (2018). https://doi.org/10.1177/1933719117716776

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719117716776

Keywords

Navigation