Skip to main content

Advertisement

Log in

Control of Progesterone Receptor-A Transrepressive Activity in Myometrial Cells: Implications for the Control of Human Parturition

  • Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Uterine quiescence during pregnancy is maintained by progesterone primarily via signaling mediated by the type-B progesterone receptor (PR-B) in myometrial cells. Withdrawal of PR-B-mediated progesterone activity is a principal trigger for labor. One mechanism for PR-B withdrawal is by inhibition of its activity by the type-A PR (PR-A) isoform in myometrial cells. We hypothesized that human parturition involves hormonal interactions that induce the capacity for PR-A to inhibit PR-B in myometrial cells and that pro-inflammatory cytokines are major regulators of this process. We tested this hypothesis in an immortalized human myometrial cell line, hTERT-HM, in which levels of PR-A and PR-B can be experimentally controlled. We found that the capacity for PR-A to repress PR-B, assessed by activity of a transiently transfected reporter DNA controlled by the progesterone response element, and expression of FK506 binding protein 5 (FKBP5) an endogenous PR-B responsive gene, was increased by serum supplementation and interleukin-1β (3. In pregnant uterus, FKBP5 was detected exclusively in myometrial cells and its expression decreased with advancing gestation and in association with the onset of labor at term. These findings suggest that in myometrial cells the repressive activity of PR-A on PR-B increases with advancing gestation and is induced by pro-inflammatory cytokines. This may be a key mechanism linking inflammation with the onset of labor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Csapo A. Progesterone block. Am J Anat. 1956;98(2):273–291.

    CAS  PubMed  Google Scholar 

  2. Csapo A. The “seesaw” theory of the regulatory mechanism of pregnancy. Am J Obstet Gynecol. 1975;121(4):578–581.

    Article  CAS  Google Scholar 

  3. Young IR, Renfree MB, Mesiano S, et al. The comparative physiology of parturition in mammals: hormones and parturition in mammals. In: Norris D, Lopez K, eds. Hormones and Reproduction in Vertebrates. London, United Kingdom: Academic Press; 2010.

    Google Scholar 

  4. Tulchinsky D, Hobel CJ, Yeager E, Marshall JR. Plasma estrone, estradiol, estriol, progesterone, and 17-hydroxyprogesterone in human pregnancy. I. Normal pregnancy. Am J Obstet Gynecol. 1972;112(8):1095–1100.

    Article  CAS  PubMed  Google Scholar 

  5. Boroditsky RS, Reyes FI, Winter JS, Faiman C. Maternal serum estrogen and progesterone concentrations preceding normal labor. Obstet Gynecol. 1978;51(6):686–691.

    CAS  PubMed  Google Scholar 

  6. Walsh SW, Stanczyk FZ, Novy MJ. Daily hormonal changes in the maternal, fetal, and amniotic fluid compartments before parturition in a primate species. J Clin Endocrinol Metab. 1984;58(4):629–639.

    Article  CAS  PubMed  Google Scholar 

  7. Frydman R, Fernandez H, Pons JC, Ulmann A. Mifepristone (RU486) and therapeutic late pregnancy termination: a double-blind study of two different doses. Hum Reprod. 1988;3(6):803–806.

    Article  CAS  PubMed  Google Scholar 

  8. Avrech OM, Golan A, Weinraub Z, Bukovsky I, Caspi E. Mifepristone (RU486) alone or in combination with a prostaglandin analogue for termination of early pregnancy: a review. Fertil Steril. 1991;56(3):385–393.

    Article  CAS  PubMed  Google Scholar 

  9. Cadepond F, Ulmann A, Baulieu EE. RU486 (mifepristone): mechanisms of action and clinical uses. Annu Rev Med. 1997;48:129–156.

    Article  CAS  PubMed  Google Scholar 

  10. Kastner P, Krust A, Turcotte B, et al. Two distinct estrogen-regulated promoters generate transcripts encoding the two functionally different human progesterone receptor forms A and B. EMBO J. 1990;9(5):1603–1614.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wen DX, Xu YF, Mais DE, Goldman ME, McDonnell DP. The A and B isoforms of the human progesterone receptor operate through distinct signaling pathways within target cells. Mol Cell Biol. 1994;14(12):8356–8364.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Mulac-Jericevic B, Mullinax RA, DeMayo FJ, Lydon JP. Con-neely OM. Subgroup of reproductive functions of progesterone mediated by progesterone receptor-B isoform. Science. 2000;289(5485):1751–1754.

    Article  CAS  PubMed  Google Scholar 

  13. Conneely OM, Mulac-Jericevic B, Lydon JP. Progesterone-dependent regulation of female reproductive activity by two distinct progesterone receptor isoforms. Steroids. 2003;68(10-13):771–778.

    Article  CAS  PubMed  Google Scholar 

  14. Mulac-Jericevic B, Lydon JP, DeMayo FJ, Conneely OM. Defective mammary gland morphogenesis in mice lacking the progesterone receptor B isoform. Proc Natl Acad Sci USA. 2003;100(17):9744–9749.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Tung L, Mohamed MK, Hoeffler JP, Takimoto GS, Horwitz KB. Antagonist-occupied human progesterone B-receptors activate transcription without binding to progesterone response elements and are dominantly inhibited by A-receptors. Mol Endocrinol. 1993;7(10):1256–1265.

    CAS  PubMed  Google Scholar 

  16. Vegeto E, Shahbaz MM, Wen DX, et al. Human progesterone receptor A form is a cell- and promoter-specific repressor of human progesterone receptor B function. Mol Endocrinol. 1993;7(10):1244–1255.

    CAS  PubMed  Google Scholar 

  17. Giangrande PH, Kimbrel EA, Edwards DP, McDonnell DP. The opposing transcriptional activities of the two isoforms of the human progesterone receptor are due to differential cofactor binding. Mol Cell Biol. 2000;20(9):3102–3115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Pieber D, Allport VC, Hills F, Johnson M, Bennett PR. Interaction between progesterone receptor isoforms in myometrial cells in human labour. Mol Hum Reprod. 2001;7(9):875–879.

    Article  CAS  PubMed  Google Scholar 

  19. Condon JC, Hardy DB, Kovaric K, Mendelson CR. Up-regulation of the progesterone receptor (PR)-C isoform in laboring myometrium by activation of nuclear factor-kappaB may contribute to the onset of labor through inhibition of PR function. Mol Endocrinol. 2006;20(4):764–775.

    Article  CAS  PubMed  Google Scholar 

  20. Hardy DB, Janowski BA, Corey DR, Mendelson CR. Progesterone receptor plays a major antiinflammatory role in human myometrial cells by antagonism of nuclear factor-kappaB activation of cyclooxygenase 2 expression. Mol Endocrinol. 2006;20(11):2724–2733.

    Article  CAS  PubMed  Google Scholar 

  21. Merlino AA, Welsh TN, Tan H, et al. Nuclear progesterone receptors in the human pregnancy myometrium: evidence that parturition involves functional progesterone withdrawal mediated by increased expression of progesterone receptor-A. J Clin Endocrinol Metab. 2007;92(5):1927–1933.

    Article  CAS  PubMed  Google Scholar 

  22. Mesiano S, Chan EC, Fitter JT, et al. Progesterone withdrawal and estrogen activation in human parturition are coordinated by progesterone receptor A expression in the myometrium. J Clin Endocrinol Metab. 2002;87(6):2924–2930.

    Article  CAS  PubMed  Google Scholar 

  23. Tan H, Yi L, Rote NS, Hurd WW, Mesiano S. Progesterone receptor-A and -B have opposite effects on proinflammatory gene expression in human myometrial cells: implications for progesterone actions in human pregnancy and parturition. J Clin Endocrinol Metab. 2012;97(5):E719–E730.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ke W, Chen C, Luo H, et al. Histone deacetylase 1 regulates the expression of progesterone receptor A during human parturition by occupying the progesterone receptor A promoter. Reprod Sci. 2016;23(7):955–964.

    Article  CAS  PubMed  Google Scholar 

  25. Amini P, Michniuk D, Kuo K, et al. Human parturition involves progesterone receptor-A phosphorylation at serine-345 in myometrial cells. Endocrinology. 2016;157(11):4434–4445.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Peters GA, Yi L, Skomorovska-Prokvolit Y, et al. Inflammatory stimuli increase progesterone receptor-A stability and transrepressive activity in myometrial cells. Endocrinology. 2016;158(1):158–169.

    PubMed Central  Google Scholar 

  27. Condon J, Yin S, Mayhew B, et al. Telomerase immortalization of human myometrial cells. Biol Reprod. 2002;67(2):506–514.

    Article  CAS  PubMed  Google Scholar 

  28. Thomson AJ, Telfer JF, Young A, et al. Leukocytes infiltrate the myometrium during human parturition: further evidence that labour is an inflammatory process. Hum Reprod. 1999;14(1):229–236.

    Article  CAS  PubMed  Google Scholar 

  29. Madsen G, Zakar T, Ku CY, et al. Prostaglandins differentially modulate progesterone receptor-A and -B expression in human myometrial cells: evidence for prostaglandin-induced functional progesterone withdrawal. J Clin Endocrinol Metab. 2004;89(2):1010–1013.

    Article  CAS  PubMed  Google Scholar 

  30. Abdel-Hafiz H, Takimoto GS, Tung L, Horwitz KB. The inhibitory function in human progesterone receptor N termini binds SUMO-1 protein to regulate autoinhibition and transrepression. J Biol Chem. 2002;277(37):33950–33956.

    Article  CAS  PubMed  Google Scholar 

  31. Hagan CR, Daniel AR, Dressing GE, Lange CA. Role of phosphorylation in progesterone receptor signaling and specificity. Mol Cell Endocrinol. 2012;357(1-2):43–49.

    Article  CAS  PubMed  Google Scholar 

  32. Abdel-Hafiz HA, Horwitz KB. Post-translational modifications of the progesterone receptors. J Steroid Biochem Mol Biol. 2014;140:80–89.

    Article  CAS  PubMed  Google Scholar 

  33. Hagan CR, Lange CA. Molecular determinants of context-dependent progesterone receptor action in breast cancer. BMC Med. 2014;12:32.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Romero R, Espinoza J, Goncalves LF, et al. The role of inflammation and infection in preterm birth. Semin Reprod Med. 2007;25(1):21–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sam Mesiano PhD.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patel, B., Peters, G.A., Skomorovska-Prokvolit, Y. et al. Control of Progesterone Receptor-A Transrepressive Activity in Myometrial Cells: Implications for the Control of Human Parturition. Reprod. Sci. 25, 214–221 (2018). https://doi.org/10.1177/1933719117716775

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719117716775

Keywords

Navigation