Skip to main content

Advertisement

Log in

Agonist-Dependent Downregulation of Progesterone Receptors in Human Cervical Stromal Fibroblasts

  • Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Progesterone (P4) maintains uterine quiescence during the majority of pregnancy, whereas diminished progesterone receptor (PR) expression and/or activity (ie, functional P4 withdrawal) promotes parturition. To investigate the regulation of PR expression in cervical stroma, fibroblasts from premenopausal hysterectomy specimens were prepared. Greater than 99% of the cultures were vimentin positive (mesenchymal cell marker) with only occasional cytokeratin-8 positivity (epithelial cell marker) and no evidence of CD31-positive (endothelial cell marker) cells. Cells were immunolabeled with antibodies directed against PRs (PR-A and PR-B), estrogen receptor α (ER-α), and glucocorticoid receptor-α/β (GR-α/β). All cells were uniformly immunopositive for ER-α and GR-α/β but did not express PRs. Incubation of cells with 10−8 mol/L 17β-estradiol induced a time-dependent increase in PR-A and PR-B messenger RNAs (mRNAs) by quantitative real-time polymerase chain reactions and proteins by immunoblotting and immunofluorescence. Incubation of cervical fibroblasts with PR ligands (medroxyprogesterone acetate or Org-2058) downregulated PR-A and PR-B levels. Coincubation of cells with PR ligands plus RU-486, a PR antagonist, partially abrogated agonist-induced receptor downregulation. Dexamethasone, a pure glucocorticoid, had no inhibitory effect on PR expression. These results indicate that progestins and estrogens regulate PR expression in cervical fibroblasts. We postulate that hormonal regulation of PR expression in the cervical stroma may contribute to functional P4 withdrawal in preparation for parturition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kniss DA, Iams JD. Regulation of parturition update. Endocrine and paracrine effectors of term and preterm labor. Clin Perinatol. 1998;25(4):819–836.

    CAS  PubMed  Google Scholar 

  2. Mesiano S, Welsh TN. Steroid hormone control of myometrial contractility and parturition. Sem Cell Dev Biol. 2007;18(3):321–331.

    CAS  Google Scholar 

  3. Larsen B, Hwang J. Progesterone interactions with the cervix: translational implications for term and preterm birth. Infect Dis Obstet Gynecol. 2011;2011:353297.

    PubMed  PubMed Central  Google Scholar 

  4. Parizek A, Koucky M, Duskova M. Progesterone, inflammation and preterm labor. J Steroid Biochem Mol Biol. 2014;139:159–165.

    CAS  PubMed  Google Scholar 

  5. Csapo A. Progesterone block. Am J Anat. 1956;98(2):273–291.

    CAS  PubMed  Google Scholar 

  6. Mesiano S, Wang Y, Norwitz ER. Progesterone receptors in the human pregnancy uterus: do they hold the key to birth timing? Reprod Sci. 2011;18(1):6–19.

    CAS  PubMed  Google Scholar 

  7. Xu H, Gonzalez JM, Ofori E, Elovitz MA. Preventing cervical ripening: the primary mechanism by which progestational agents prevent preterm birth? Am J Obstet Gynecol. 2008;198(3):314. e311–e318.

    Google Scholar 

  8. Pieber D, Allport VC, Hills F, Johnson M, Bennett PR. Interactions between progesterone receptor isoforms in myometrial cells in human labour. Mol Hum Reprod. 2001;7(9):875–879.

    CAS  PubMed  Google Scholar 

  9. Madsen G, Zakar T, Ku CY, Sanborn BM, Smith R, Mesiano S. Prostaglandins differentially modulate progesterone receptor-A and -B expression in human myometrial cells: evidence for prostaglandin-induced functional progesterone withdrawal. J Clin Endocrinol Metab. 2004;89(2):1010–1013.

    CAS  PubMed  Google Scholar 

  10. Merlino A, Welsh T, Erdonmez T, et al. Nuclear progesterone receptor expression in the human fetal membranes and decidua at term before and after labor. Reprod Sci. 2009;16(4):357–363.

    CAS  PubMed  Google Scholar 

  11. Oner C, Schatz F, Kizilay G, et al. Progestin-inflammatory cytokine interactions affect matrix metalloproteinase-1 and -3 expression in term decidual cells: implications for treatment of chorioamnionitis-induced preterm delivery. J Clin Endocrinol Metab. 2008;93(1):252–259.

    CAS  PubMed  Google Scholar 

  12. Lockwood CJ, Murk W, Kayisli UA, et al. Progestin and thrombin regulate tissue factor expression in human term decidual cells. J Clin Endocrinol Metab. 2009;94(6):2164–2170.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Li XH, Kishore AH, Dao D, Zheng W, Roman CA, Word RA. A novel isoform of microphthalmia-associated transcription factor inhibits IL-8 gene expression in human cervical stromal cells. Mol Endocrinol. 2010;24(8):1512–1528.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. House M, Tadesse-Telila S, Norwitz ER, Socrate S, Kaplan DL. Inhibitory effect of progesterone on cervical tissue formation in a three-dimensional culture system with human cervical fibroblasts. Biol Reprod. 2014;90(1):18.

    PubMed  Google Scholar 

  15. Chwalisz K. The use of progesterone antagonists for cervical ripening and as an adjunct to labour and delivery. Hum Reprod. 1994;9(suppl 1):131–161.

    CAS  PubMed  Google Scholar 

  16. Dudley DJ, Branch DW, Edwin SS, Mitchell MD. Induction of preterm birth in mice by RU486. Biol Reprod. 1996;55(5):992–995.

    CAS  PubMed  Google Scholar 

  17. Gonzalez JM, Xu H, Chai J, Ofori E, Elovitz MA. Preterm and term cervical ripening in CD1 Mice (Mus musculus): similar or divergent molecular mechanisms? Biol Reprod. 2009;81(6):1226–1232.

    CAS  PubMed  Google Scholar 

  18. Facchinetti F, Vaccaro V. Pharmacological use of progesterone and 17-alpha-hydroxyprogesterone caproate in the prevention of preterm delivery. Minerva Ginecologica. 2009;61(5):401–409.

    CAS  PubMed  Google Scholar 

  19. Hassan SS, Romero R, Vidyadhari D, et al. Vaginal progesterone reduces the rate of preterm birth in women with a sonographic short cervix: a multicenter, randomized, double-blind, placebo-controlled trial. Ultrasound Obstet Gynecol. 2011;38(1):18–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Conde-Agudelo A, Romero R, Nicolaides K, et al. Vaginal progesterone vs. cervical cerclage for the prevention of preterm birth in women with a sonographic short cervix, previous preterm birth, and singleton gestation: a systematic review and indirect comparison metaanalysis. Am J Obstet Gynecol. 2013;208(1):42. e41–e42. e18.

    Google Scholar 

  21. Deeks ED. 17 alpha-Hydroxyprogesterone caproate (Makena): in the prevention of preterm birth. Paediatric Drugs. 2011;13(5):337–345.

    PubMed  Google Scholar 

  22. Kuon RJ, Shi SQ, Maul H, et al. Pharmacologic actions of progestins to inhibit cervical ripening and prevent delivery depend on their properties, the route of administration, and the vehicle. Am J Obstet Gynecol. 2010;202(5):455. e451–e459.

    Google Scholar 

  23. Romero R. Vaginal progesterone to reduce the rate of preterm birth and neonatal morbidity: a solution at last. Womens Health (Lond Engl). 2011;7(5):501–504.

    Google Scholar 

  24. Kasid A, Buckshee K, Hingorani V, Laumas KR. Interaction of progestins with steroid receptors in human uterus. Biochem J. 1978;176(2):531–539.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Haslam SZ, Shyamala G. Relative distribution of estrogen and progesterone receptors among the epithelial, adipose, and connective tissue components of the normal mammary gland. Endocrinol. 1981;108(3):825–830.

    CAS  Google Scholar 

  26. Kurl RN, Borthwick NM. Progesterone receptors in human endometrium. Eur J Obstet Gynecol Reprod Biol. 1982;13(5):293–301.

    CAS  PubMed  Google Scholar 

  27. Cano A, Serra V, Rivera J, Monmeneu R, Marzo C. Expression of estrogen receptors, progesterone receptors, and an estrogen receptor-associated protein in the human cervix during the menstrual cycle and menopause. Fert Steril. 1990;54(6):1058–1064.

    CAS  Google Scholar 

  28. Lockwood CJ, Stocco C, Murk W, Kayisli UA, Funai EF, Schatz F. Human labor is associated with reduced decidual cell expression of progesterone, but not glucocorticoid, receptors. J Clin Endocrinol Metab. 2010;95(5):2271–2275.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Burris TP, Solt LA, Wang Y, et al. Nuclear receptors and their selective pharmacologic modulators. Pharmacol Rev. 2013;65(2):710–778.

    PubMed  Google Scholar 

  30. Snijders MP, de Goeij AF, Debets-Te Baerts MJ, Rousch MJ, Koudstaal J, Bosman FT. Immunocytochemical analysis of oestrogen receptors and progesterone receptors in the human uterus throughout the menstrual cycle and after the menopause. J Reprod Fertil. 1992;94(2):363–371.

    CAS  PubMed  Google Scholar 

  31. Press M, Spaulding B, Groshen S, et al. Comparison of different antibodies for detection of progesterone receptor in breast cancer. Steroids. 2002;67(9):799–813.

    CAS  PubMed  Google Scholar 

  32. Lockwood CJ, Nemerson Y, Guller S, et al. Progestational regulation of human endometrial stromal cell tissue factor expression during decidualization. J Clin Endocrinol Metab. 1993;76(1):231–236.

    CAS  PubMed  Google Scholar 

  33. Bentel JM, Birrell SN, Pickering MA, Holds DJ, Horsfall DJ, Tilley WD. Androgen receptor agonist activity of the synthetic progestin, medroxyprogesterone acetate, in human breast cancer cells. Mol cell Endocrinol. 1999;154(1–2):11–20.

    CAS  PubMed  Google Scholar 

  34. Thomas CP, Liu KZ, Vats HS. Medroxyprogesterone acetate binds the glucocorticoid receptor to stimulate alpha-ENaC and sgk1 expression in renal collecting duct epithelia. Am J Physiol Renal Physiol. 2006;290(2):F306–F312.

    CAS  PubMed  Google Scholar 

  35. Buhimschi IA, Dussably L, Buhimschi CS, Ahmed A, Weiner CP. Physical and biomechanical characteristics of rat cervical ripening are not consistent with increased collagenase activity. Am J Obstet Gynecol. 2004;191(5):1695–1704.

    CAS  PubMed  Google Scholar 

  36. House M, Socrate S. The cervix as a biomechanical structure. Ultrasound Obstet Gynecol. 2006;28(6):745–749.

    CAS  PubMed  Google Scholar 

  37. Myers KM, Paskaleva AP, House M, Socrate S. Mechanical and biochemical properties of human cervical tissue. Acta Biomater. 2008;4(1):104–116.

    CAS  PubMed  Google Scholar 

  38. House M, Kaplan DL, Socrate S. Relationships between mechanical properties and extracellular matrix constituents of the cervical stroma during pregnancy. Semin Perinatol. 2009;33(5):300–307.

    PubMed  PubMed Central  Google Scholar 

  39. Yellon SM, Dobyns AE, Beck HL, Kurtzman JT, Garfield RE, Kirby MA. Loss of progesterone receptor-mediated actions induce preterm cellular and structural remodeling of the cervix and premature birth. PLoS One. 2013;8(12):e81340.

    PubMed  PubMed Central  Google Scholar 

  40. Haluska GJ, Cook MJ, Novy MJ. Inhibition and augmentation of progesterone production during pregnancy: effects on parturition in rhesus monkeys. Am J Obstet Gynecol. 1997;176(3):682–691.

    CAS  PubMed  Google Scholar 

  41. Elliott CL, Brennand JE, Calder AA. The effects of mifepristone on cervical ripening and labor induction in primigravidae. Obstet Gynecol. 1998;92(5):804–809.

    CAS  PubMed  Google Scholar 

  42. Stenlund PM, Ekman G, Aedo AR, Bygdeman M. Induction of labor with mifepristone–a randomized, double-blind study versus placebo. Acta Obstet Gynecol Scandinavica. 1999;78(9):793–798.

    CAS  Google Scholar 

  43. Giacalone PL, Daures JP, Faure JM, Boulot P, Hedon B, Laffargue F. The effects of mifepristone on uterine sensitivity to oxytocin and on fetal heart rate patterns. Eur J Obstet Gynecol Reprod Biol. 2001;97(1):30–34.

    CAS  PubMed  Google Scholar 

  44. Facchinetti F, Paganelli S, Comitini G, Dante G, Volpe A. Cervical length changes during preterm cervical ripening: effects of 17–alpha-hydroxyprogesterone caproate. Am J Obstet Gynecol. 2007;196(5):453 e451–454; discussion 421.

    Google Scholar 

  45. O’Brien JM, Defranco EA, Adair CD, et al. Effect of progesterone on cervical shortening in women at risk for preterm birth: secondary analysis from a multinational, randomized, doubleblind, placebo-controlled trial. Ultrasound Obstet Gynecol. 2009;34(6):653–659.

    PubMed  Google Scholar 

  46. Cho H, Aronica SM, Katzenellenbogen BS. Regulation of progesterone receptor gene expression in MCF-7 breast cancer cells: a comparison of the effects of cyclic adenosine 3’,5’-monophosphate, estradiol, insulin-like growth factor-I, and serum factors. Endocrinol. 1994;134(2):658–664.

    CAS  Google Scholar 

  47. Kraus WL, Katzenellenbogen BS. Regulation of progesterone receptor gene expression and growth in the rat uterus: modulation of estrogen actions by progesterone and sex steroid hormone antagonists. Endocrinol. 1993;132(6):2371–2379.

    CAS  Google Scholar 

  48. Eckert RL, Katzenellenbogen BS. Human endometrial cells in primary tissue culture: modulation of the progesterone receptor level by natural and synthetic estrogens in vitro. J Clin Endocrinol Metab. 1981;52(4):699–708.

    CAS  PubMed  Google Scholar 

  49. Nardulli AM, Katzenellenbogen BS. Progesterone receptor regulation in T47D human breast cancer cells: analysis by density labeling of progesterone receptor synthesis and degradation and their modulation by progestin. Endocrinol. 1988;122(4):1532–1540.

    CAS  Google Scholar 

  50. Lange CA, Shen T, Horwitz KB. Phosphorylation of human progesterone receptors at serine-294 by mitogen-activated protein kinase signals their degradation by the 26S proteasome. Proc Natl Acad Sci U S A. 2000;97(3):1032–1037.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Ismail A, Nawaz Z. Nuclear hormone receptor degradation and gene transcription: an update. IUBMB Life. 2005;57(7):483–490.

    CAS  PubMed  Google Scholar 

  52. Perissi V, Rosenfeld MG. Controlling nuclear receptors: the circular logic of cofactor cycles. Nat Rev Mol Cell Biol. 2005;6(7):542–554.

    CAS  PubMed  Google Scholar 

  53. Tseng L, Zhu HH. Regulation of progesterone receptor messenger ribonucleic acid by progestin in human endometrial stromal cells. Biol Reprod. 1997;57(6):1360–1366.

    CAS  PubMed  Google Scholar 

  54. Tang M, Mazella J, Gao J, Tseng L. Progesterone receptor activates its promoter activity in human endometrial stromal cells. Mol Cell Endocrinol. 2002;192(1–2):45–53.

    CAS  PubMed  Google Scholar 

  55. Cowan S, Calder AA, Kelly RW. Decidualisation of cervical stromal cells. Eur J Obstet Gynecol Reprod Biol. 2004;114(2):189–196.

    PubMed  Google Scholar 

  56. Fukuyama A, Tanaka K, Kakizaki I, et al. Anti-inflammatory effect of proteoglycan and progesterone on human uterine cervical fibroblasts. Life Sci. 2012;90(13–14):484–488.

    CAS  PubMed  Google Scholar 

  57. Kim MG, Shim JY, Pak JH, et al. Progesterone modulates the expression of interleukin-6 in cultured term human uterine cervical fibroblasts. Am J Reprod Immunol. 2012;67(5):369–375.

    CAS  PubMed  Google Scholar 

  58. Lippman M, Bolan G, Huff K. The effects of glucocorticoids and progesterone on hormone-responsive human breast cancer in long-term tissue culture. Cancer Res. 1976;36(12):4602–4609.

    CAS  PubMed  Google Scholar 

  59. Attardi BJ, Zeleznik A, Simhan H, Chiao JP, Mattison DR, Caritis SN. Comparison of progesterone and glucocorticoid receptor binding and stimulation of gene expression by progesterone, 17-alpha hydroxyprogesterone caproate, and related progestins. Am J Obstet Gynecol. 2007;197(6):599. e591–e597.

    Google Scholar 

  60. Lei K, Chen L, Georgiou EX, et al. Progesterone acts via the nuclear glucocorticoid receptor to suppress IL-1beta-induced COX-2 expression in human term myometrial cells. PLoS One. 2012;7(11):e50167.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Eick GN, Thornton JW. Evolution of steroid receptors from an estrogen-sensitive ancestral receptor. Mol Cell Endocrinol. 2011;334(1–2):31–38.

    CAS  PubMed  Google Scholar 

  62. Eick GN, Colucci JK, Harms MJ, Ortlund EA, Thornton JW. Evolution of minimal specificity and promiscuity in steroid hormone receptors. PLoS Genet. 2012;8(11):e1003072.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Lu NZ, Wardell SE, Burnstein KL, et al. International Union of Pharmacology. LXV. The pharmacology and classification of the nuclear receptor superfamily: glucocorticoid, mineralocorticoid, progesterone, and androgen receptors. Pharmacol Rev. 2006;58(4):782–797.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas A. Kniss PhD.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ackerman, W.E., Summerfield, T.L., Mesiano, S. et al. Agonist-Dependent Downregulation of Progesterone Receptors in Human Cervical Stromal Fibroblasts. Reprod. Sci. 23, 112–123 (2016). https://doi.org/10.1177/1933719115597787

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719115597787

Keywords

Navigation