Skip to main content
Log in

Experimentally Induced Preterm Birth in Sheep Following a Clinical Course of Antenatal Betamethasone: Effects on Growth and Long-Term Survival

  • Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Preterm births account for approximately 10% of births worldwide, with the majority (*80%) being moderate preterm. Our aim was to determine the effects of moderate preterm birth on survival and long-term growth of male and female offspring using an ovine model of preterm birth that was preceded by a clinically relevant dose of corticosteroids. Ewes were induced to deliver preterm or at term; those assigned to deliver preterm were administered antenatal betamethasone (11.4 mg, 2 doses, 24 hours apart). The growth (body weight and body dimensions) of offspring was monitored to adulthood (62 weeks) when the animals were humanely killed for organ collection. Survival in the immediate period following preterm birth was high (75% for both sexes). However, there were unexpected deaths between 5 and 12 weeks of age, as a result of vitamin E/selenium deficiency; this only occurred in preterm offspring. From birth until adolescence, preterm lambs were lighter than term lambs (controls). After this time, there was gradual catch-up in body weight in preterm females, whereas in preterm males, body weight remained lower than in controls. Preterm sheep were smaller in stature than controls throughout life. This clinically relevant model of preterm birth leads to equally high survival rates in both sexes and is an excellent animal model in which to examine the effects of moderate preterm birth on growth and development of organ systems into adulthood.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. World Health Organization. Preterm birth. http://www.who.int/mediacentre/factsheets/fs363/en/. Accessed November 23, 2016.

    Google Scholar 

  2. Beck S, Wojdyla D, Say L, et al. The worldwide incidence of preterm birth: a systematic review of maternal mortality and morbidity. Bull World Health Organ. 2010;88(1):31–38.

    Google Scholar 

  3. Martin JA, Hamilton BE, Osterman MJ, Curtin SC, Matthews TJ. Births: final data for 2013. Natl Vital Stat Rep. 2015;64(1):1–65.

    PubMed  Google Scholar 

  4. Shapiro-Mendoza CK, Lackritz EM. Epidemiology of late and moderate preterm birth. Semin Fetal Neonatal Med. 2012;17(3):120–125.

    PubMed  PubMed Central  Google Scholar 

  5. Bonamy AK, Bendito A, Martin H, Andolf E, Sedin G, Norman M. Preterm birth contributes to increased vascular resistance and higher blood pressure in adolescent girls. Pediatr Res. 2005;58(5):845–849.

    PubMed  Google Scholar 

  6. Dalziel SR, Parag V, Rodgers A, Harding JE. Cardiovascular risk factors at age 30 following pre-term birth. Int J Epidemiol. 2007;36(4):907–915.

    PubMed  Google Scholar 

  7. Doyle LW. Cardiopulmonary outcomes of extreme prematurity. Semin Perinatol. 2008;32(1):28–34.

    PubMed  Google Scholar 

  8. Nuyt AM, Alexander BT. Developmental programming and hypertension. Curr Opin Nephrol Hypertens. 2009;18(2):144–152.

    PubMed  PubMed Central  Google Scholar 

  9. Sutherland MR, Bertagnolli M, Lukaszewski MA, et al. Preterm birth and hypertension risk: the oxidative stress paradigm. Hypertension. 2014;63(1):12–18.

    CAS  PubMed  Google Scholar 

  10. O’Reilly M, Sozo F, Harding R. Impact of preterm birth and bronchopulmonary dysplasia on the developing lung: long-term consequences for respiratory health. Clin Exp Pharmacol Physiol. 2013;40(11):765–773.

    PubMed  Google Scholar 

  11. Ment LR, Vohr BR. Preterm birth and the developing brain. Lancet Neurol. 2008;7(5):378–379.

    PubMed  PubMed Central  Google Scholar 

  12. Boardman JP, Walley A, Ball G, et al. Common genetic variants and risk of brain injury after preterm birth. Pediatrics. 2014;133(6):e1655–e1663.

    PubMed  Google Scholar 

  13. Petrini JR, Dias T, McCormick MC, Massolo ML, Green NS, Escobar GJ. Increased risk of adverse neurological development for late preterm infants. J Pediatr. 2009;154(2):169–176.

    PubMed  Google Scholar 

  14. Gouyon JB, Iacobelli S, Ferdynus C, Bonsante F. Neonatal problems of late and moderate preterm infants. Semin Fetal Neonatal Med. 2012;17(3):146–152.

    PubMed  Google Scholar 

  15. Kugelman A, Colin AA. Late preterm infants: near term but still in a critical developmental time period. Pediatrics. 2013;132(4):741–751.

    PubMed  Google Scholar 

  16. Darcy AE. Complications of the late preterm infant. J Perinatal Neonatal Nurs. 2009;23(1):78–86.

    Google Scholar 

  17. Loftin RW, Habli M, Snyder CC, Cormier CM, Lewis DF, DeFranco EA. Late Preterm Birth. Rev Obstet Gynecol. 2010;3(1):10–19.

    PubMed  PubMed Central  Google Scholar 

  18. Pike KC, Lucas JS. Respiratory consequences of late preterm birth. Paediatr Respir Rev. 2015;16(3):182–188.

    PubMed  Google Scholar 

  19. Gkentzi D, Dimitriou G. Long-term outcome of infants born late preterm. Curr Pediatr Rev. 2014;10(4):263–267.

    PubMed  Google Scholar 

  20. Kotecha SJ, Dunstan FD, Kotecha S. Long term respiratory outcomes of late preterm-born infants. Semin Fetal Neonatal Med. 2012;17(2):77–81.

    PubMed  Google Scholar 

  21. Bensley JG, Stacy VK, De Matteo R, Harding R, Black MJ. Cardiac remodelling as a result of pre-term birth: implications for future cardiovascular disease. Eur Heart J. 2010;31(16):2058–2066.

    CAS  PubMed  Google Scholar 

  22. Bensley JG, De Matteo R, Harding R, Black MJ. Preterm birth with antenatal corticosteroid administration has injurious and persistent effects on the structure and composition of the aorta and pulmonary artery. Pediatr Res. 2012;71(2):150–155.

    CAS  PubMed  Google Scholar 

  23. Sutherland MR, Gubhaju L, Moore L, et al. Accelerated maturation and abnormal morphology in the preterm neonatal kidney. J Am Soc Nephrol. 2011;22(7):1365–1374.

    PubMed  PubMed Central  Google Scholar 

  24. De Matteo R, Blasch N, Stokes V, Davis P, Harding R. Induced preterm birth in sheep: a suitable model for studying the developmental effects of moderately preterm birth. Reprod Sci. 2010;17(8):724–733.

    PubMed  Google Scholar 

  25. Elovitz MA, Mrinalini C. Animal models of preterm birth. Trends Endocrinol Metab. 2004;15(10):479–487.

    CAS  PubMed  Google Scholar 

  26. Gubhaju L, Sutherland MR, Yoder BA, Zulli A, Bertram JF, Black MJ. Is nephrogenesis affected by preterm birth? Studies in a non-human primate model. Am J Physiol Renal Physiol. 2009;297(6):F1668–F1677.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Albertine KH. Utility of large-animal models of BPD: chronically ventilated preterm lambs. Am J Physiol Lung Cell Mol Physiol. 2015;308(10):L983–L1001.

    PubMed  PubMed Central  Google Scholar 

  28. Pierce RA, Albertine KH, Starcher BC, Bohnsack JF, Carlton DP, Bland RD. Chronic lung injury in preterm lambs: disordered pulmonary elastin deposition. Am J Physiol Lung Cell Mol Physiol. 1997;272(3):L452–L460.

    CAS  Google Scholar 

  29. Ishak N, Hanita T, Sozo F, Maritz G, Harding R, De Matteo R. Sex differences in cardiorespiratory transition and surfactant composition following preterm birth in sheep. Am J Physiol Regul Integr Comp Physiol. 2012;303(7):R778–R789.

    CAS  PubMed  Google Scholar 

  30. Atik A, Sozo F, Orgeig S, et al. Long-term pulmonary effects of intrauterine exposure to endotoxin following preterm birth in sheep. Reprod Sci. 2012;19(12):1352–1364.

    PubMed  Google Scholar 

  31. Burrell JH, Boyn AM, Kumarasamy V, Hsieh A, Head SI, Lumbers ER. Growth and maturation of cardiac myocytes in fetal sheep in the second half of gestation. Anat Rec A Discov Mol Cell Evol Biol. 2003;274(2):952–961.

    PubMed  Google Scholar 

  32. Jonker SS, Zhang L, Louey S, Giraud GD, Thornburg KL, Faber JJ. Myocyte enlargement, differentiation, and proliferation kinetics in the fetal sheep heart. J Appl Physiol (1985). 2007;102(3):1130–1142.

    Google Scholar 

  33. Robillard JE, Weismann DN, Herin P. Ontogeny of single glomerular perfusion rate in fetal and newborn lambs. Pediatr Res. 1981;15(9):1248–1255.

    CAS  PubMed  Google Scholar 

  34. Gimonet V, Bussieres L, Medjebeur AA, Gasser B, Lelongt B, Laborde K. Nephrogenesis and angiotensin II receptor subtypes gene expression in the fetal lamb. Am J Physiol. 1998;274(6 pt 2):F1062–F1069.

    CAS  PubMed  Google Scholar 

  35. Back SA, Luo NL, Borenstein NS, Volpe JJ, Kinney HC. Arrested oligodendrocyte lineage progression during human cerebral white matter development: dissociation between the timing of progenitor differentiation and myelinogenesis. J Neuropathol Exp Neurol. 2002;61(2):197–211.

    PubMed  Google Scholar 

  36. Back SA, Riddle A, Hohimer AR. Role of instrumented fetal sheep preparations in defining the pathogenesis of human periventricular white-matter injury. J Child Neurol. 2006;21(7):582–589.

    PubMed  Google Scholar 

  37. Meeusen EN, Snibson KJ, Hirst SJ, Bischof RJ. Sheep as a model species for the study and treatment of human asthma and other respiratory diseases. Drug Discov Today Dis Model. 2009;6(4):101–106.

    Google Scholar 

  38. De Matteo R, Ishak N, Hanita T, Harding R, Sozo F. Respiratory adaptation and surfactant composition of unanesthetized male and female lambs differ for up to 8h after preterm birth. Pediatr Res. 2016;79:13–21.

    PubMed  Google Scholar 

  39. Kent AL, Wright IM, Abdel-Latif ME. Mortality and adverse neurologic outcomes are greater in preterm male infants. Pediatrics. 2012;129(1):124–131.

    PubMed  Google Scholar 

  40. Ingemarsson I. Gender aspects of preterm birth. BJOG. 2003; 110(suppl 20):34–38.

    PubMed  Google Scholar 

  41. Hofmeyr G. Antenatal corticosteroids for women at risk of pre-term birth: RHL commentary. 2009. http://apps.who.int/rhl/preg nancy_childbirth/complications/preterm_birth/cd004454_hof meyrgj_com/en/index.html. Accessed November 23, 2016.

  42. Oldfield JE, Muth OH, Schubert JR. Selenium and vit. E as related to growth and white muscle disease in lambs. Proc Soc Exp Biol Med. 1960;103:799–800.

    CAS  PubMed  Google Scholar 

  43. Hogue DE, Proctor JF, Warner RG, Loosli JK. Relation of selenium, vitamin E and an unidentified factor to muscular dystrophy (stiff-lamb or white-muscle disease) in the lamb. J Anim Sci. 1962;21(1):25–29.

    CAS  Google Scholar 

  44. Institute of Medicine (US) Committee on Understanding Premature Birth and Assuring Healthy Outcomes. Mortality and acute complications in preterm infants. In: Behrman RE, Butler AS, s. Preterm Birth: Causes, Consequences, and Prevention. Washington, DC: National Academies Press; 2007.

    Google Scholar 

  45. Rurak DW, Fay S, Gruber NC. Measurement of rest and activity in newborn lambs using actigraphy: studies in term and preterm lambs. Reprod Fertil Dev. 2008;20(3):418–430.

    CAS  PubMed  Google Scholar 

  46. Sangild PT. Stimulation of gastric proteases in the neonatal pig by a rise in adrenocortical secretion at parturition. Reprod Fertil Dev. 1995;7(5):1293–1298.

    CAS  PubMed  Google Scholar 

  47. Batista RFL, Silva AAM, Barbieri MA, Simo˜es VMF, Bettiol H. Factors associated with height catch-up and catch-down growth among schoolchildren. PLoS One. 2012;7(3):e32903.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Roberts G, Cheong J, Opie G, et al. Growth of extremely preterm survivors from birth to 18 years of age compared with term controls. Pediatrics. 2013;131(2):e439–e445.

    PubMed  Google Scholar 

  49. Rigo J, Nyamugabo K, Picaud JC, Gerard P, Pieltain C, De Curtis M. Reference values of body composition obtained by dual energy X-ray absorptiometry in preterm and term neonates. J Pediatr Gastroenterol Nutr. 1998;27(2):184–190.

    CAS  PubMed  Google Scholar 

  50. Uthaya S, Thomas EL, Hamilton G, Dore CJ, Bell J, Modi N. Altered adiposity after extremely preterm birth. Pediatr Res. 2005;57(2):211–215.

    PubMed  Google Scholar 

  51. Cooke RJ, Rawlings DJ, McCormick K, et al. Body composition of preterm infants during infancy. Arch Dis Child Fetal Neonatal Ed. 1999;80(3):F188–F191.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Pieltain C, De Curtis M, Gerard P, Rigo J. Weight gain composition in preterm infants with dual energy X-ray absorptiometry. Pediatr Res. 2001;49(1):120–124.

    CAS  PubMed  Google Scholar 

  53. Mathai S, Derraik JG, Cutfield WS, et al. Increased adiposity in adults born preterm and their children. PLoS One. 2013;8(11): e81840.

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Jane Black PhD.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, V.B., De Matteo, R., Harding, R. et al. Experimentally Induced Preterm Birth in Sheep Following a Clinical Course of Antenatal Betamethasone: Effects on Growth and Long-Term Survival. Reprod. Sci. 24, 1203–1213 (2017). https://doi.org/10.1177/1933719116681514

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719116681514

Keywords

Navigation