Skip to main content

Advertisement

Log in

A Role for the Inflammasome in Spontaneous Labor at Term with Acute Histologic Chorioamnionitis

  • Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Inflammasomes are cytosolic signaling platforms that regulate the activation of caspase (CASP)-1, which induces the maturation of interleukin (IL)-1β and IL-18. Herein, we determined whether the chorioamniotic membranes from women in spontaneous labor at term with acute histologic chorioamnionitis express major inflammasome components and whether these changes are associated with the activation of CASP-1 and CASP-4 and the release of mature IL-1β and IL-18. When comparing the chorioamniotic membranes from women in spontaneous labor at term with acute histologic chorioamnionitis to those without this placental lesion, we found that (1) the messenger RNA (mRNA) abundance of NLR family pyrin domain containing 3 (NLRP3), NLR family CARD domain containing 4 (NLRC4), absent in melanoma 2 (AIM2), and nucleotide binding oligomerization domain 2 (NOD2) was higher; (2) the NLRP3 and NLRC4 protein quantities were increased; (3) the mRNA and protein expressions of CASP-1 and its active forms were greater; (4) CASP-4 was increased at the mRNA level only; (5) the mRNA and protein expressions of IL-1β and its mature form were higher; and (6) a modest increase in the total protein concentration and abundance of the mature form of IL-18 was observed. In vitro incubation of the chorioamniotic membranes with the CASP-1 inhibitor, VX765, decreased the release of endotoxin-induced IL-1β and IL-18 (2-fold) but not IL-6 or tumor necrosis factor a. In conclusion, spontaneous labor at term with acute histologic chorioamnionitis is characterized by an upregulation of inflammasome components which, in turn, may participate in the activation of CASP-1 and lead to the release of mature IL-1β by the chorioamniotic membranes. These results support a role for the inflammasome in the mechanisms responsible for spontaneous labor at term with acute histologic chorioamnionitis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kim CJ, Romero R, Chaemsaithong P, Chaiyasit N, Yoon BH, Kim YM. Acute chorioamnionitis and funisitis: definition, pathologic features, and clinical significance. Am J Obstet Gynecol. 2015;213(4 suppl):S29–S52.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Romero R, Chaemsaithong P, Docheva N, et al. Clinical chorioamnionitis at term VI: acute chorioamnionitis and funisitis according to the presence or absence of microorganisms and inflammation in the amniotic cavity. J Perinat Med. 2016;44(1):33–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Romero R, Miranda J, Chaiworapongsa T, et al. A novel molecular microbiologic technique for the rapid diagnosis of microbial invasion of the amniotic cavity and intra-amniotic infection in preterm labor with intact membranes. Am J Reprod Immunol. 2014;71(4):330–358.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Romero R, Miranda J, Chaiworapongsa T, et al. Prevalence and clinical significance of sterile intra-amniotic inflammation in patients with preterm labor and intact membranes. Am J Reprod Immunol. 2014;72(5):458–474.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Romero R, Miranda J, Chaiworapongsa T, et al. Sterile intra-amniotic inflammation in asymptomatic patients with a sonographic short cervix: prevalence and clinical significance [published online September 24, 2014]. J Matern Fetal Neonatal Med:1–17.

    Google Scholar 

  6. Romero R, Miranda J, Kusanovic JP, et al. Clinical chorioamnionitis at term I: microbiology of the amniotic cavity using cultivation and molecular techniques. J Perinat Med. 2015;43(1):19–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lotze MT, Deisseroth A, Rubartelli A. Damage associated molecular pattern molecules. Clin Immunol. 2007;124(1):1–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Oppenheim JJ, Yang D. Alarmins: chemotactic activators of immune responses. Curr Opin Immunol. 2005;17(4):359–365.

    Article  CAS  PubMed  Google Scholar 

  9. Russell P. Inflammatory lesions of the human placenta: clinical significance of acute chorioamnionitis. Am J Diagn Gynecol Obstet. 1979;2:127–137.

    Google Scholar 

  10. Guzick DS, Winn K. The association of chorioamnionitis with preterm delivery. Obstet Gynecol. 1985;65(1):11–16.

    CAS  PubMed  Google Scholar 

  11. van Hoeven KH, Anyaegbunam A, Hochster H, et al. Clinical significance of increasing histologic severity of acute inflammation in the fetal membranes and umbilical cord. Pediatr Pathol Lab Med. 1996;16(5):731–744.

    Article  PubMed  Google Scholar 

  12. Lee SM, Park JW, Kim BJ, et al. Acute histologic chorioamnionitis is a risk factor for adverse neonatal outcome in late preterm birth after preterm premature rupture of membranes. PLoS One. 2013;8(12):e79941.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Seong HS, Lee SE, Kang JH, Romero R, Yoon BH. The frequency of microbial invasion of the amniotic cavity and histologic chorioamnionitis in women at term with intact membranes in the presence or absence of labor. Am J Obstet Gynecol. 2008;199(4):375.e1–5.

    Article  Google Scholar 

  14. Park HS, Romero R, Lee SM, Park CW, Jun JK, Yoon BH. Histologic chorioamnionitis is more common after spontaneous labor than after induced labor at term. Placenta. 2010;31(9):792–795.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Roberts DJ, Celi AC, Riley LE, et al. Acute histologic chorioamnionitis at term: nearly always noninfectious. PIoS One. 2012;7(3):e31819.

    Article  CAS  Google Scholar 

  16. Halgunset J, Johnsen H, Kjollesdal AM, Qvigstad E, Espevik T, Austgulen R. Cytokine levels in amniotic fluid and inflammatory changes in the placenta from normal deliveries at term. Eur J Obstet Gynecol Reprod Biol. 1994;56(3):153–160.

    Article  CAS  PubMed  Google Scholar 

  17. Dollner H, Vatten L, Halgunset J, Rahimipoor S, Austgulen R. Histologic chorioamnionitis and umbilical serum levels of proinflammatory cytokines and cytokine inhibitors. BJOG. 2002;109(5):534–539.

    Article  PubMed  Google Scholar 

  18. Tasci Y, Dilbaz B, Uzmez Onal B, et al. The value of cord blood interleukin-6 levels for predicting chorioamnionitis, funisitis and neonatal infection in term premature rupture of membranes. Eur J Obstet Gynecol Reprod Biol. 2006;128(1-2):34–39.

    Article  CAS  PubMed  Google Scholar 

  19. Duncombe G, Veldhuizen RA, Gratton RJ, Han VK, Richardson BS. IL-6 and TNFalpha across the umbilical circulation in term pregnancies: relationship with labour events. Early Hum Dev. 2010;86(2):113–117.

    Article  CAS  PubMed  Google Scholar 

  20. Chan CJ, Summers KL, Chan NG, Hardy DB, Richardson BS. Cytokines in umbilical cord blood and the impact of labor events in low-risk term pregnancies. Early Hum Dev. 2013;89(12):1005–1010.

    Article  CAS  PubMed  Google Scholar 

  21. Baergen R, Benirschke K, Ulich TR. Cytokine expression in the placenta. The role of interleukin 1 and interleukin 1 receptor antagonist expression in chorioamnionitis and parturition. Arch Pathol Lab Med. 1994;118(1):52–55.

    CAS  PubMed  Google Scholar 

  22. Lockwood CJ, Arcuri F, Toti P, et al. Tumor necrosis factor-alpha and interleukin-1beta regulate interleukin-8 expression in third trimester decidual cells: implications for the genesis of chorioamnionitis. Am J Pathol. 2006;169(4):1294–1302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hung TH, Chen SF, Hsu JJ, Hsieh CC, Hsueh S, Hsieh TT. Tumour necrosis factor-alpha converting enzyme in human gestational tissues from pregnancies complicated by chorioamnionitis. Placenta. 2006;27(9-10):996–1006.

    Article  CAS  PubMed  Google Scholar 

  24. Arcuri F, Toti P, Buchwalder L, et al. Mechanisms of leukocyte accumulation and activation in chorioamnionitis: interleukin 1 beta and tumor necrosis factor alpha enhance colony stimulating factor 2 expression in term decidua. Reprod Sci. 2009;16(5):453–461.

    Article  CAS  PubMed  Google Scholar 

  25. Lockwood CJ, Murk WK, Kayisli UA, et al. Regulation of interleukin-6 expression in human decidual cells and its potential role in chorioamnionitis. Am J Pathol. 2010;177(4):1755–1764.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Vanderhoeven JP, Bierle CJ, Kapur RP, et al. Group B streptococcal infection of the choriodecidua induces dysfunction of the cytokeratin network in amniotic epithelium: a pathway to membrane weakening. PIoS Pathog. 2014;10(3):e1003920.

    Article  CAS  Google Scholar 

  27. Hillier SL, Witkin SS, Krohn MA, Watts DH, Kiviat NB, Eschenbach DA. The relationship of amniotic fluid cytokines and preterm delivery, amniotic fluid infection, histologic chorioamnionitis, and chorioamnion infection. Obstet Gynecol. 1993;81(6):941–948.

    CAS  PubMed  Google Scholar 

  28. Saito S, Kasahara T, Kato Y, Ishihara Y, Ichijo M. Elevation of amniotic fluid interleukin 6 (IL-6), IL-8 and granulocyte colony stimulating factor (G-CSF) in term and preterm parturition. Cytokine. 1993;5(1):81–88.

    Article  CAS  PubMed  Google Scholar 

  29. Yoon BH, Jun JK, Romero R, et al. Amniotic fluid inflammatory cytokines (interleukin-6, interleukin-lbeta, and tumor necrosis factor-alpha), neonatal brain white matter lesions, and cerebral palsy. Am J Obstet Gynecol. 1997;177(1):19–26.

    Article  CAS  PubMed  Google Scholar 

  30. Yoon BH, Romero R, Park JS, et al. Fetal exposure to an intra-amniotic inflammation and the development of cerebral palsy at the age of three years. Am J Obstet Gynecol. 2000;182(3):675–681.

    Article  CAS  PubMed  Google Scholar 

  31. Hitti J, Tarczy-Hornoch P, Murphy J, Hillier SL, Aura J, Eschenbach DA. Amniotic fluid infection, cytokines, and adverse outcome among infants at 34 weeks’ gestation or less. Obstet Gynecol. 2001;98(6):1080–1088.

    CAS  PubMed  Google Scholar 

  32. Moon JB, Kim JC, Yoon BH, et al. Amniotic fluid matrix metalloproteinase-8 and the development of cerebral palsy. J Perinat Med. 2002;30(4):301–306.

    Article  PubMed  Google Scholar 

  33. Combs CA, Gravett M, Garite TJ, et al; ProteoGenix/Obstetrix Collaborative Research Network. Amniotic fluid infection, inflammation, and colonization in preterm labor with intact membranes. Am J Obstet Gynecol. 2014;210(2):125.e121–125.e115.

    Article  Google Scholar 

  34. Kunze M, Klar M, Morfeld CA, et al. Cytokines in noninva-sively obtained amniotic fluid as predictors of fetal inflammatory response syndrome. Am J Obstet Gynecol. 2016;215(1):96.e1–8.

    Article  CAS  Google Scholar 

  35. Yoon BH, Romero R, Yang SH, et al. Interleukin-6 concentrations in umbilical cord plasma are elevated in neonates with white matter lesions associated with periventricular leukomalacia. Am J Obstet Gynecol. 1996;174(5):1433–1440.

    Article  CAS  PubMed  Google Scholar 

  36. Weeks JW, Reynolds L, Taylor D, Lewis J, Wan T, Gall SA. Umbilical cord blood interleukin-6 levels and neonatal morbidity. Obstet Gynecol. 1997;90(5):815–818.

    Article  CAS  PubMed  Google Scholar 

  37. Gomez R, Romero R, Ghezzi F, Yoon BH, Mazor M, Berry SM. The fetal inflammatory response syndrome. Am J Obstet Gynecol. 1998;179(1):194–202.

    Article  CAS  PubMed  Google Scholar 

  38. Berner R, Niemeyer CM, Leititis JU, et al. Plasma levels and gene expression of granulocyte colony-stimulating factor, tumor necrosis factor-alpha, interleukin (IL)-lbeta, IL-6, IL-8, and soluble intercellular adhesion molecule-1 in neonatal early onset sepsis. Pediatr Res. 1998;44(4):469–477.

    Article  CAS  PubMed  Google Scholar 

  39. Dollner H, Vatten L, Linnebo I, Zanussi GF, Laerdal A, Austgulen R. Inflammatory mediators in umbilical plasma from neonates who develop early-onset sepsis. Biol Neonate. 2001;80(1):41–47.

    Article  CAS  PubMed  Google Scholar 

  40. Goepfert AR, Andrews WW, Carlo W, et al. Umbilical cord plasma interleukin-6 concentrations in preterm infants and risk of neonatal morbidity. Am J Obstet Gynecol. 2004;191(4):1375–1381.

    Article  CAS  PubMed  Google Scholar 

  41. An H, Nishimaki S, Ohyama M, et al. Interleukin-6, interleukin-8, and soluble tumor necrosis factor receptor-I in the cord blood as predictors of chronic lung disease in premature infants. Am J Obstet Gynecol. 2004;191(5):1649–1654.

    Article  CAS  PubMed  Google Scholar 

  42. Elsmen E, Ley D, Cilio CM, Hansen-Pupp I, Hellstrom-Westas L. Umbilical cord levels of interleukin-1 receptor antagonist and neonatal outcome. Biol Neonate. 2006;89(4):220–226.

    Article  CAS  PubMed  Google Scholar 

  43. Satar M, Turhan E, Yapicioglu H, Narli N, Ozgunen FT, Cetiner S. Cord blood cytokine levels in neonates born to mothers with prolonged premature rupture of membranes and its relationship with morbidity and mortality. Eur Cytokine Netw. 2008;19(1):37–41.

    CAS  PubMed  Google Scholar 

  44. Liu J, Feng ZC. Increased umbilical cord plasma interleukin-1 beta levels was correlated with adverse outcomes of neonatal hypoxic-ischemic encephalopathy. J Trop Pediatr. 2010;56(3):178–182.

    Article  PubMed  Google Scholar 

  45. Armstrong-Wells J, Donnelly M, Post MD, Manco-Johnson MJ, Winn VD, Sebire G. Inflammatory predictors of neurologic disability after preterm premature rupture of membranes. Am J Obstet Gynecol. 2015;212(2):212.e211–e219.

    Article  CAS  Google Scholar 

  46. Cordeiro CN, Sawa Y, Vaidya D, et al. Mathematical modeling of the biomarker milieu to characterize preterm birth and predict adverse neonatal outcomes. Am J Reprod Immunol. 2016;75(5):594–601.

    Article  CAS  PubMed  Google Scholar 

  47. Redline RW, Faye-Petersen O, Heller D, Qureshi F, Savell V, Vogler C; Society for Pediatric Pathology, Perinatal Section, Amniotic Fluid Infection Nosology Committee. Amniotic infection syndrome: nosology and reproducibility of placental reaction patterns. Pediatr Dev Pathol. 2003;6(5):435–448.

    Article  PubMed  Google Scholar 

  48. Romero R, Ceska M, Avila C, Mazor M, Behnke E, Lindley I. Neutrophil attractant/activating peptide-1/interleukin-8 in term and preterm parturition. Am J Obstet Gynecol. 1991;165(4 pt 1):813–820.

    Article  CAS  PubMed  Google Scholar 

  49. Cherouny PH, Pankuch GA, Romero R, et al. Neutrophil attractant/activating peptide-l/interleukin-8: association with histologic chorioamnionitis, preterm delivery, and bioactive amniotic fluid leukoattractants. Am J Obstet Gynecol. 1993;169(5):1299–1303.

    Article  CAS  PubMed  Google Scholar 

  50. Gomez R, Ghezzi F, Romero R, Munoz H, Tolosa JE, Rojas I. Premature labor and intra-amniotic infection. Clinical aspects and role of the cytokines in diagnosis and pathophysiology. Clin Perinatal. 1995;22(2):281–342.

    Article  CAS  Google Scholar 

  51. Yoon BH, Romero R, Jun JK, et al. Amniotic fluid cytokines (interleukin-6, tumor necrosis factor-alpha, interleukin-1 beta, and interleukin-8) and the risk for the development of bronchopulmonary dysplasia. Am J Obstet Gynecol. 1997;177(4):825–830.

    Article  CAS  PubMed  Google Scholar 

  52. Ghezzi F, Gomez R, Romero R, et al. Elevated interleukin-8 concentrations in amniotic fluid of mothers whose neonates subsequently develop bronchopulmonary dysplasia. Eur J Obstet Gynecol Reprod Biol. 1998;78(1):5–10.

    Article  CAS  PubMed  Google Scholar 

  53. Cohen J, Ghezzi F, Romero R, et al. GRO alpha in the fetomaternal and amniotic fluid compartments during pregnancy and parturition. Am J Reprod Immunol. 1996;35(1):23–29.

    Article  CAS  PubMed  Google Scholar 

  54. Hsu CD, Meaddough E, Aversa K, Copel JA. The role of amniotic fluid L-selectin, GRO-alpha, and interleukin-8 in the pathogenesis of intraamniotic infection. Am J Obstet Gynecol. 1998;178(3):428–432.

    Article  CAS  PubMed  Google Scholar 

  55. Hsu CD, Meaddough E, Aversa K, et al. Elevated amniotic fluid levels of leukemia inhibitory factor, interleukin 6, and interleukin 8 in intra-amniotic infection. Am J Obstet Gynecol. 1998;179(5):1267–1270.

    Article  CAS  PubMed  Google Scholar 

  56. Jacobsson B, Mattsby-Baltzer I, Andersch B, et al. Microbial invasion and cytokine response in amniotic fluid in a Swedish population of women in preterm labor. Acta Obstet Gynecol Scand. 2003;82(2):120–128.

    Article  PubMed  Google Scholar 

  57. Jacobsson B, Mattsby-Baltzer I, Andersch B, et al. Microbial invasion and cytokine response in amniotic fluid in a Swedish population of women with preterm prelabor rupture of membranes. Acta Obstet Gynecol Scand. 2003;82(5):423–431.

    Article  PubMed  Google Scholar 

  58. Figueroa R, Garry D, Elimian A, Patel K, Sehgal PB, Tejani N. Evaluation of amniotic fluid cytokines in preterm labor and intact membranes. J Matern Fetal Neonatal Med. 2005;18(4):241–247.

    Article  CAS  PubMed  Google Scholar 

  59. Witt A, Berger A, Gruber CJ, Petricevic L, Apfalter P, Husslein P. IL-8 concentrations in maternal serum, amniotic fluid and cord blood in relation to different pathogens within the amniotic cavity. J Perinat Med. 2005;33(1):22–26.

    Article  CAS  PubMed  Google Scholar 

  60. Mittal P, Romero R, Kusanovic JP, et al. CXCL6 (granulocyte chemotactic protein-2): a novel chemokine involved in the innate immune response of the amniotic cavity. Am J Reprod Immunol. 2008;60(3):246–257.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Romero R, Chaemsaithong P, Korzeniewski SJ, et al. Clinical chorioamnionitis at term II: the intra-amniotic inflammatory response. J Perinat Med. 2016;44(1):5–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Black RA, Kronheim SR, Merriam JE, March CJ, Hopp TP. A pre-aspartate-specific protease from human leukocytes that cleaves pro-interleukin-1 beta. J Biol Chem. 1989;264(10):5323–5326.

    CAS  PubMed  Google Scholar 

  63. Kostura MJ, Tocci MJ, Limjuco G, et al. Identification of amonocyte specific pre-interleukin 1 beta convertase activity. Proc Natl Acad Sci U S A. 1989;86(14):5227–5231.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Thornberry NA, Bull HG, Calaycay JR, et al. A novel heterodimeric cysteine protease is required for interleukin-1 beta processing in monocytes. Nature. 1992;356(6372):768–774.

    Article  CAS  PubMed  Google Scholar 

  65. Wilson KP, Black JA, Thomson JA, et al. Structure and mechanism of interleukin-1 beta converting enzyme. Nature. 1994;370(6487):270–275.

    Article  CAS  PubMed  Google Scholar 

  66. Dinarello CA. Interleukin-1 beta, interleukin-18, and the interleukin-1 beta converting enzyme. Ann N Y Acad Sci. 1998;856:1–11.

    Article  CAS  PubMed  Google Scholar 

  67. Fantuzzi G, Dinarello CA. Interleukin-18 and interleukin-1 beta: two cytokine substrates for ICE (caspase-1). J Clin Immunol. 1999;19(1):1–11.

    Article  CAS  PubMed  Google Scholar 

  68. Sansonetti PJ, Phalipon A, Arondel J, et al. Caspase-1 activation of IL-lbeta and IL-18 are essential for Shigella flexneri-induced inflammation. Immunity. 2000;12(5):581–590.

    Article  CAS  PubMed  Google Scholar 

  69. Martinon F, Burns K, Tschopp J. The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol Cell. 2002;10(2):417–426.

    Article  CAS  PubMed  Google Scholar 

  70. Agostini L, Martinon F, Burns K, McDermott MF, Hawkins PN, Tschopp J. NALP3 forms an IL-lbeta-processing inflammasome with increased activity in Muckle-Wells autoinflammatory disorder. Immunity. 2004;20(3):319–325.

    Article  CAS  PubMed  Google Scholar 

  71. Mariathasan S, Newton K, Monack DM, et al. Differential activation of the inflammasome by caspase-1 adaptors ASC and Ipaf. Nature. 2004;430(6996):213–218.

    Article  CAS  PubMed  Google Scholar 

  72. Petrilli V, Papin S, Tschopp J. The inflammasome. Curr Biol. 2005;15(15):R581.

    Article  CAS  PubMed  Google Scholar 

  73. Ogura Y, Sutterwala FS, Flavell RA. The inflammasome: first line of the immune response to cell stress. Cell. 2006;126(4):659–662.

    Article  CAS  PubMed  Google Scholar 

  74. Sutterwala FS, Ogura Y, Flavell RA. The inflammasome in pathogen recognition and inflammation. J Leukoc Biol. 2007;82(2):259–264.

    Article  CAS  PubMed  Google Scholar 

  75. Mariathasan S, Monack DM. Inflammasome adaptors and sensors: intracellular regulators of infection and inflammation. Nat Rev Immunol. 2007;7(1):31–40.

    Article  CAS  PubMed  Google Scholar 

  76. Lamkanfi M, Dixit VM. Inflammasomes: guardians of cytosolic sanctity. Immunol Rev. 2009;227(1):95–105.

    Article  CAS  PubMed  Google Scholar 

  77. Pedra JH, Cassel SL, Sutterwala FS. Sensing pathogens and danger signals by the inflammasome. Curr Opin Immunol. 2009;21(1):10–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Franchi L, Eigenbrod T, Munoz-Planillo R, Nunez G. The inflammasome: a caspase-1-activation platform that regulates immune responses and disease pathogenesis. Nat Immunol. 2009;10(3):241–247.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Netea MG, Nold-Petry CA, Nold MF, et al. Differential requirement for the activation of the inflammasome for processing and release of IL-1beta in monocytes and macrophages. Blood. 2009;113(10):2324–2335.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Stutz A, Golenbock DT, Latz E. Inflammasomes: too big to miss. J Clin Invest. 2009;119(12):3502–3511.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Jha S, Ting JP. Inflammasome-associated nucleotide-binding domain, leucine-rich repeat proteins and inflammatory diseases. J Immunol. 2009;183(12):7623–7629.

    Article  CAS  PubMed  Google Scholar 

  82. Schroder K, Zhou R, Tschopp J. The NLRP3 inflammasome: a sensor for metabolic danger? Science. 2010;327(5963):296–300.

    Article  CAS  PubMed  Google Scholar 

  83. Schroder K, Tschopp J. The inflammasomes. Cell. 2010;140(6):821–832.

    Article  CAS  PubMed  Google Scholar 

  84. Franchi L, Munoz-Planillo R, Reimer T, Eigenbrod T, Nunez G. Inflammasomes as microbial sensors. Eur J Immunol. 2010;40(3):611–615.

    Article  CAS  PubMed  Google Scholar 

  85. Khare S, Luc N, Dorfleutner A, Stehlik C. Inflammasomes and their activation. Crit Rev Immunol. 2010;30(5):463–487.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Gross O, Thomas CJ, Guarda G, Tschopp J. The inflammasome: an integrated view. Immunol Rev. 2011;243(1):136–151.

    Article  CAS  PubMed  Google Scholar 

  87. Bauernfeind F, Ablasser A, Bartok E, et al. Inflammasomes: current understanding and open questions. Cell Mol Life Sci. 2011;68(5):765–783.

    Article  CAS  PubMed  Google Scholar 

  88. Horvath GL, Schrum JE, De Nardo CM, Latz E. Intracellular sensing of microbes and danger signals by the inflammasomes. Immunol Rev. 2011;243(1):119–135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Franchi L, Munoz-Planillo R, Nunez G. Sensing and reacting to microbes through the inflammasomes. Nat Immunol. 2012;13(4):325–332.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Dagenais M, Skeldon A, Saleh M. The inflammasome: in memory of Dr. Jurg Tschopp. Cell Death Differ. 2012;19(1):5–12.

    Article  CAS  PubMed  Google Scholar 

  91. Ciraci C, Janczy JR, Sutterwala FS, Cassel SL. Control of innate and adaptive immunity by the inflammasome. Microbes Infect. 2012;14(14):1263–1270.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Rathinam VA, Vanaja SK, Fitzgerald KA. Regulation of inflammasome signaling. Nat Immunol. 2012;13(4):333–342.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Franchi L, Nunez G. Immunology. Orchestrating inflammasomes. Science. 2012;337(6100):1299–1300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Henao-Mejia J, Elinav E, Strowig T, Flavell RA. Inflammasomes: far beyond inflammation. Nat Immunol. 2012;13(4):321–324.

    Article  CAS  PubMed  Google Scholar 

  95. Bauernfeind F, Hornung V. Of inflammasomes and pathogens—sensing of microbes by the inflammasome. EMBO Mol Med. 2013;5(6):814–826.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Vladimer GI, Marty-Roix R, Ghosh S, Weng D, Lien E. Inflammasomes and host defenses against bacterial infections. Curr Opin Microbiol. 2013;16(1):23–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Ulland TK, Ferguson PJ, Sutterwala FS. Evasion of inflammasome activation by microbial pathogens. J Clin Invest. 2015;125(2):469–477.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Gu Y, Kuida K, Tsutsui H, et al. Activation of interferon-gamma inducing factor mediated by interleukin-1 beta converting enzyme. Science. 1997;275(5297):206–209.

    Article  CAS  PubMed  Google Scholar 

  99. Ghayur T, Banerjee S, Hugunin M, et al. Caspase-1 processes IFN-gamma-inducing factor and regulates LPS-induced IFN-gamma production. Nature. 1997;386(6625):619–623.

    Article  CAS  PubMed  Google Scholar 

  100. Latz E. The inflammasomes: mechanisms of activation and function. Curr Opin Immunol. 2010;22(1):28–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. van de Veerdonk FL, Netea MG, Dinarello CA, Joosten LA. Inflammasome activation and IL-lbeta and IL-18 processing during infection. Trends Immunol. 2011;32(3):110–116.

    Article  PubMed  CAS  Google Scholar 

  102. Skeldon A, Saleh M. The inflammasomes: molecular effectors of host resistance against bacterial, viral, parasitic, and fungal infections. Front Microbiol. 2011;2:15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Lamkanfi M, Dixit VM. Modulation of inflammasome pathways by bacterial and viral pathogens. J Immunol. 2011;187(2):597–602.

    Article  CAS  PubMed  Google Scholar 

  104. Broz P, Monack DM. Molecular mechanisms of inflammasome activation during microbial infections. Immunol Rev. 2011;243(1):174–190.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Koizumi Y, Toma C, Higa N, Nohara T, Nakasone N, Suzuki T. Inflammasome activation via intracellular NLRs triggered by bacterial infection. Cell Microbiol. 2012;14(2):149–154.

    Article  CAS  PubMed  Google Scholar 

  106. Latz E, Xiao TS, Stutz A. Activation and regulation of the inflammasomes. Nat Rev Immunol. 2013;13(6):397–411.

    Article  CAS  PubMed  Google Scholar 

  107. Lamkanfi M, Dixit VM. Mechanisms and functions of inflammasomes. Cell. 2014;157(5):1013–1022.

    Article  CAS  PubMed  Google Scholar 

  108. Vanaja SK, Rathinam VA, Fitzgerald KA. Mechanisms of inflammasome activation: recent advances and novel insights. Trends Cell Biol. 2015;25(5):308–315.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Guo H, Callaway JB, Ting JP. Inflammasomes: mechanism of action, role in disease, and therapeutics. Nat Med. 2015;21(7):677–687.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Wang S, Miura M, Jung YK, Zhu H, Li E, Yuan J. Murine caspase-11, an ICE-interacting protease, is essential for the activation of ICE. Cell. 1998;92(4):501–509.

    Article  CAS  PubMed  Google Scholar 

  111. Sollberger G, Strittmatter GE, Kistowska M, French LE, Beer HD. Caspase-4 is required for activation of inflammasomes. J Immunol. 2012;188(4):1992–2000.

    Article  CAS  PubMed  Google Scholar 

  112. Pineles BL, Romero R, Montenegro D, et al. “The inflammasome” in human parturition. Reprod Sci. 2007;14(1):59A.

    Article  Google Scholar 

  113. Gotsch F, Romero R, Chaiworapongsa T, et al. Evidence of the involvement of caspase-1 under physiologic and pathologic cellular stress during human pregnancy: a link between the inflammasome and parturition. J Matern Fetal Neonatal Med. 2008;21(9):605–616.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Romero R, Xu Y, Plazyo O, et al. A role for the inflammasome in spontaneous labor at term [published online March 8, 2016]. Am J Reprod Immunol. doi:10.1111/aji.12440.

    Google Scholar 

  115. Montenegro D, Romero R, Pineles P, et al. Differential expression of the inflammasome components in the fetal inflammatory response syndrome. Reprod Sci. 2007;14(1):59A–60A.

    Article  Google Scholar 

  116. Abrahams VM. The role of the Nod-like receptor family in trophoblast innate immune responses. J Reprod Immunol. 2011;88(2):112–117.

    Article  CAS  PubMed  Google Scholar 

  117. Mulla MJ, Myrtolli K, Potter J, et al. Uric acid induces trophoblast IL-lbeta production via the inflammasome: implications for the pathogenesis of preeclampsia. Am J Reprod Immunol. 2011;65(6):542–548.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Pontillo A, Girardelli M, Agostinis C, Masat E, Bulla R, Crovella S. Bacterial LPS differently modulates inflammasome gene expression and IL-lbeta secretion in trophoblast cells, decidual stromal cells, and decidual endothelial cells. Reprod Sci. 2013;20(5):563–566.

    Article  CAS  PubMed  Google Scholar 

  119. Mulla MJ, Salmon JE, Chamley LW, et al. A role for uric acid and the Nalp3 inflammasome in antiphospholipid antibody-induced IL-1beta production by human first trimester trophoblast. PLoS One. 2013;8(6):e65237.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Abrahams VM. Novel mechanisms of placenta inflammation in obstetrics antiphospholipid syndrome. Am J Reprod Immunol. 2014;71(suppl 1):25.

    Google Scholar 

  121. Hansen L, Kotla S, Mari G, Rao G. The role of NLRP3 inflammasome in preeclampsia—a translational approach. Am J Obstet Gynecol. 2014;210(1):S134.

    Article  Google Scholar 

  122. Khan RN, Hay DP. A clear and present danger: inflammasomes DAMPing down disorders of pregnancy. Hum Reprod Update. 2015;21(3):388–405.

    Article  CAS  PubMed  Google Scholar 

  123. Pontillo A, Reis EC, Bricher PN, et al. NLRP1 L155H polymorphism is a risk factor for preeclampsia development. Am J Reprod Immunol. 2015;73(6):577–581.

    Article  CAS  PubMed  Google Scholar 

  124. Maneta E, Warren AY, Hay DP, Khan RN. Caspase-1-mediated cytokine release from gestational tissues, placental, and cord blood. Front Physiol. 2015;6:186.

    Article  PubMed  PubMed Central  Google Scholar 

  125. Romero R, Mazor M, Brandt F, et al. Interleukin-1 alpha and interleukin-1 beta in preterm and term human parturition. Am J Reprod Immunol. 1992;27(3-4):117–123.

    Article  CAS  PubMed  Google Scholar 

  126. Pacora P, Romero R, Maymon E, et al. Participation of the novel cytokine interleukin 18 in the host response to intra-amniotic infection. Am J Obstet Gynecol. 2000;183(5):1138–1143.

    Article  CAS  PubMed  Google Scholar 

  127. American College of Obstetrics and Gynecology Committee on Practice Bulletins-Obstetrics. ACOG practice bulletin number 49, December 2003: dystocia and augmentation of labor. Obstet Gynecol. 2003;102(6):1445–1454.

    Google Scholar 

  128. Alexander GR, Himes JH, Kaufman RB, Mor J, Kogan M. A United States national reference for fetal growth. Obstet Gynecol. 1996;87(2):163–168.

    Article  CAS  PubMed  Google Scholar 

  129. Redline RW. Placental pathology: a systematic approach with clinical correlations. Placenta. 2008;29(suppl A):S86–S91.

    Article  PubMed  Google Scholar 

  130. Hoang M, Potter JA, Gysier SM, et al. Human fetal membranes generate distinct cytokine profiles in response to bacterial Tolllike receptor and nod-like receptor agonists. Biol Reprod. 2014;90(2):39.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  131. Sutterwala FS, Ogura Y, Zamboni DS, Roy CR, Flavell RA. NALP3: a key player in caspase-1 activation. J Endotoxin Res. 2006;12(4):251–256.

    Article  CAS  PubMed  Google Scholar 

  132. Chae JJ, Cho YH, Lee GS, et al. Gain-of-function pyrin mutations induce NLRP3 protein-independent interleukin-1 beta activation and severe autoinflammation in mice. Immunity. 2011;34(5):755–768.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Martinon F, Petrilli V, Mayor A, Tardivel A, Tschopp J. Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature. 2006;440(7081):237–241.

    Article  CAS  PubMed  Google Scholar 

  134. Kanneganti TD, Body-Malapel M, Amer A, et al. Critical role for Cryopyrin/Nalp3 in activation of caspase-1 in response to viral infection and double-stranded RNA. J Biol Chem. 2006;281(48):36560–36568.

    Article  CAS  PubMed  Google Scholar 

  135. Mariathasan S, Weiss DS, Newton K, et al. Cryopyrin activates the inflammasome in response to toxins and ATP. Nature. 2006;440(7081):228–232.

    Article  CAS  PubMed  Google Scholar 

  136. Muruve DA, Petrilli V, Zaiss AK, et al. The inflammasome recognizes cytosolic microbial and host DNA and triggers an innate immune response. Nature. 2008;452(7183):103–107.

    Article  CAS  PubMed  Google Scholar 

  137. Dostert C, Petrilli V, Van Bruggen R, Steele C, Mossman BT, Tschopp J. Innate immune activation through Nalp3 inflammasome sensing of asbestos and silica. Science. 2008;320(5876):674–677.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Cassel SL, Eisenbarth SC, Iyer SS, et al. The Nalp3 inflammasome is essential for the development of silicosis. Proc Natl Acad Sci U S A. 2008;105(26):9035–9040.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Eisenbarth SC, Colegio OR, O’Connor W, Sutterwala FS, Flavell RA. Crucial role for the Nalp3 inflammasome in the immunostimulatory properties of aluminium adjuvants. Nature. 2008;453(7198):1122–1126.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Li H, Willingham SB, Ting JP, Re F. Cutting edge: inflammasome activation by alum and alum’s adjuvant effect are mediated by NLRP3. J Immunol. 2008;181(1):17–21.

    Article  CAS  PubMed  Google Scholar 

  141. Hornung V, Bauernfeind F, Halle A, et al. Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization. Nat Immunol. 2008;9(8):847–856.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Franchi L, Nunez G. The Nlrp3 inflammasome is critical for aluminium hydroxide-mediated IL-lbeta secretion but dispensable for adjuvant activity. Eur J Immunol. 2008;38(8):2085–2089.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Kool M, Petrilli V, De Smedt T, et al. Cutting edge: alum adjuvant stimulates inflammatory dendritic cells through activation of the NALP3 inflammasome. J Immunol. 2008;181(6):3755–3759.

    Article  CAS  PubMed  Google Scholar 

  144. Koo IC, Wang C, Raghavan S, Morisaki JH, Cox JS, Brown EJ. ESX-1-dependent cytolysis in lysosome secretion and inflammasome activation during mycobacterial infection. Cell Microbiol. 2008;10(9):1866–1878.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Allen IC, Scull MA, Moore CB, et al. The NLRP3 inflammasome mediates in vivo innate immunity to influenza A virus through recognition of viral RNA. Immunity. 2009;30(4):556–565.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Duncan JA, Gao X, Huang MT, et al. Neisseria gonorrhoeae activates the proteinase cathepsin B to mediate the signaling activities of the NLRP3 and ASC-containing inflammasome. J Immunol. 2009;182(10):6460–6469.

    Article  CAS  PubMed  Google Scholar 

  147. Joly S, Ma N, Sadler JJ, Soll DR, Cassel SL, Sutterwala FS. Cutting edge: Candida albicans hyphae formation triggers activation of the Nlrp3 inflammasome. J Immunol. 2009;183(6):3578–3581.

    Article  CAS  PubMed  Google Scholar 

  148. Munoz-Planillo R, Franchi L, Miller LS, Nunez G. A critical role for hemolysins and bacterial lipoproteins in Staphylococcus aureus-induced activation of the Nlrp3 inflammasome. J Immunol. 2009;183(6):3942–3948.

    Article  CAS  PubMed  Google Scholar 

  149. Yamasaki K, Muto J, Taylor KR, et al. NLRP3/cryopyrin is necessary for interleukin-1beta (IL-lbeta) release in response to hyaluronan, an endogenous trigger of inflammation in response to injury. J Biol Chem. 2009;284(19):12762–12771.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Cassel SL, Joly S, Sutterwala FS. The NLRP3 inflammasome: a sensor of immune danger signals. Semin Immunol. 2009;21(4):194–198.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Demente SL, Eisenbarth SC, Foellmer HG, et al. Inflammasome-activating nanoparticles as modular systems for optimizing vaccine efficacy. Vaccine. 2009;27(23):3013–3021.

    Article  CAS  Google Scholar 

  152. Thomas PG, Dash P, Aldridge JR Jr, et al. The intracellular sensor NLRP3 mediates key innate and healing responses to influenza A virus via the regulation of caspase-1. Immunity. 2009;30(4):566–575.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Ichinohe T, Lee HK, Ogura Y, Flavell R, Iwasaki A. Inflammasome recognition of influenza virus is essential for adaptive immune responses. J Exp Med. 2009;206(1):79–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Cassel SL, Sutterwala FS. Sterile inflammatory responses mediated by the NLRP3 inflammasome. Eur J Immunol. 2010;40(3):607–611.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Leemans JC, Cassel SL, Sutterwala FS. Sensing damage by the NLRP3 inflammasome. Immunol Rev. 2011;243(1):152–162.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Nakahira K, Haspel JA, Rathinam VA, et al. Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome. Nat Immunol. 2011;12(3):222–230.

    Article  CAS  PubMed  Google Scholar 

  157. Menu P, Vince JE. The NLRP3 inflammasome in health and disease: the good, the bad and the ugly. Clin Exp Immunol. 2011;166(1):1–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Rathinam VA, Vanaja SK, Waggoner L, et al. TRIF licenses caspase-11-dependent NLRP3 inflammasome activation by gram-negative bacteria. Cell. 2012;150(3):606–619.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Iyer SS, He Q, Janczy JR, et al. Mitochondrial cardiolipin is required for Nlrp3 inflammasome activation. Immunity. 2013;39(2):311–323.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. O’Neill LA. Cardiolipin and the Nlrp3 inflammasome. Cell Metab. 2013;18(5):610–612.

    Article  PubMed  CAS  Google Scholar 

  161. Clay GM, Sutterwala FS, Wilson ME. NLR proteins and parasitic disease. Immunol Res. 2014;59(1-3):142–152.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Bauernfeind FG, Horvath G, Stutz A, et al. Cutting edge: NF-kappaB activating pattern recognition and cytokine receptors license NLRP3 inflammasome activation by regulating NLRP3 expression. J Immunol. 2009;183(2):787–791.

    Article  CAS  PubMed  Google Scholar 

  163. Sutterwala FS, Haasken S, Cassel SL. Mechanism of NLRP3 inflammasome activation. Ann N Y Acad Sci. 2014;1319:82–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Franchi L, Eigenbrod T, Nunez G. Cutting edge: TNF-alpha mediates sensitization to ATP and silica via the NLRP3 inflammasome in the absence of microbial stimulation. J Immunol. 2009;183(2):792–796.

    Article  CAS  PubMed  Google Scholar 

  165. Sutterwala FS, Flavell RA. NLRC4/IPAF: a CARD carrying member of the NLR family. Clin Immunol. 2009;130(1):2–6.

    Article  CAS  PubMed  Google Scholar 

  166. Franchi L, Amer A, Body-Malapel M, et al. Cytosolic flagellin requires Ipaf for activation of caspase-1 and interleukin 1beta in salmonella-infected macrophages. Nat Immunol. 2006;7(6):576–582.

    Article  CAS  PubMed  Google Scholar 

  167. Miao EA, Alpuche-Aranda CM, Dors M, et al. Cytoplasmic flagellin activates caspase-1 and secretion of interleukin lbeta via Ipaf. Nat Immunol. 2006;7(6):569–575.

    Article  CAS  PubMed  Google Scholar 

  168. Poyet JL, Srinivasula SM, Tnani M, Razmara M, Fernandes-Alnemri T, Alnemri ES. Identification of Ipaf, a human caspase-1-activating protein related to Apaf-1. J Biol Chem. 2001;276(30):28309–28313.

    Article  CAS  PubMed  Google Scholar 

  169. Mayor A, Martinon F, De Smedt T, Petrilli V, Tschopp J. A crucial function of SGT1 and HSP90 in inflammasome activity links mammalian and plant innate immune responses. Nat Immunol. 2007;8(5):497–503.

    Article  CAS  PubMed  Google Scholar 

  170. Petrilli V, Papin S, Dostert C, Mayor A, Martinon F, Tschopp J. Activation of the NALP3 inflammasome is triggered by low intracellular potassium concentration. Cell Death Differ. 2007;14(9):1583–1589.

    Article  CAS  PubMed  Google Scholar 

  171. Fernandes-Alnemri T, Wu J, Yu JW, et al. The pyroptosome: a supramolecular assembly of ASC dimers mediating inflammatory cell death via caspase-1 activation. Cell Death Differ. 2007;14(9):1590–1604.

    Article  CAS  PubMed  Google Scholar 

  172. Kayagaki N, Wanning S, Lamkanfi M, et al. Non-canonical inflammasome activation targets caspase-11. Nature. 2011;479(7371):117–121.

    Article  CAS  PubMed  Google Scholar 

  173. Broz P, Ruby T, Belhocine K, et al. Caspase-11 increases susceptibility to Salmonella infection in the absence of caspase-1. Nature. 2012;490(7419):288–291.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Romero R, Mazor M, Wu YK, Avila C, Oyarzun E, Mitchell MD. Bacterial endotoxin and tumor necrosis factor stimulate prostaglandin production by human decidua. Prostaglandins Leukot Essent Fatty Acids. 1989;37(3):183–186.

    Article  CAS  PubMed  Google Scholar 

  175. Fidel PL Jr, Romero R, Ramirez M, et al. Interleukin-1 receptor antagonist (IL-1ra) production by human amnion, chorion, and decidua. Am J Reprod Immunol. 1994;32(1):1–7.

    Article  PubMed  Google Scholar 

  176. Vega-Sanchez R, Gomez-Lopez N, Flores-Pliego A, et al. Placental blood leukocytes are functional and phenotypically different than peripheral leukocytes during human labor. J Reprod Immunol. 2010;84(1):100–110.

    Article  CAS  PubMed  Google Scholar 

  177. Khan KN, Kitajima M, Inoue T, Fujishita A, Nakashima M, Masuzaki H. 17beta-estradiol and lipopolysaccharide additively promote pelvic inflammation and growth of endometriosis. Reprod Sci. 2015;22(5):585–594.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Fidel PL Jr, Romero R, Wolf N, et al. Systemic and local cytokine profiles in endotoxin-induced preterm parturition in mice. Am J Obstet Gynecol. 1994;170(5 pt 1):1467–1475.

    Article  CAS  PubMed  Google Scholar 

  179. Fidel PL Jr, Romero R, Cutright J, et al. Treatment with the interleukin-I receptor antagonist and soluble tumor necrosis factor receptor Fc fusion protein does not prevent endotoxin-induced preterm parturition in mice. J Soc Gynecol Investig. 1997;4(1):22–26.

    Article  CAS  PubMed  Google Scholar 

  180. Saito M, Payne MS, Miura Y, et al. Polymyxin B agonist capture therapy for intrauterine inflammation: proof-of-principle in a fetal ovine model. Reprod Sci. 2014;21(5):623–631.

    Article  PubMed  CAS  Google Scholar 

  181. Pineda-Torres M, Flores-Espinosa P, Espejel-Nunez A, et al. Evidence of an immunosuppressive effect of progesterone upon in vitro secretion of proinflammatory and prodegradative factors in a model of choriodecidual infection. BJOG. 2015;122(13):1798–1807.

    Article  CAS  PubMed  Google Scholar 

  182. Furuya H, Taguchi A, Kawana K, et al. Resveratrol protects against pathological preterm birth by suppression of macrophage-mediated inflammation. Reprod Sci. 2015;22(12):1561–1568.

    Article  CAS  PubMed  Google Scholar 

  183. Arenas-Hernandez M, Romero R, StLouis D, Hassan SS, Kaye EB, Gomez-Lopez N. An imbalance between innate and adaptive immune cells at the maternal-fetal interface occurs prior to endotoxin-induced preterm birth. Cell Mol Immunol. 2016;13(4):462–473.

    Article  CAS  PubMed  Google Scholar 

  184. Xu Y, Romero R, Miller D, et al. An M1-like macrophage polarization in decidual tissue during spontaneous preterm labor that is attenuated by rosiglitazone treatment. J Immunol. 2016;196(6):2476–2491.

    Article  CAS  PubMed  Google Scholar 

  185. Stack JH, Beaumont K, Larsen PD, et al. IL-converting enzyme/ caspase-1 inhibitor VX-765 blocks the hypersensitive response to an inflammatory stimulus in monocytes from familial cold autoinflammatory syndrome patients. J Immunol. 2005;175(4):2630–2634.

    Article  CAS  PubMed  Google Scholar 

  186. Wannamaker W, Davies R, Namchuk M, et al. (S)-1-((S)-2-[1-(4-Amino-3-chloro-phenyl)-methanoyl]-amino-3,3-dimethylbutanoy 1)-pyrrolidine-2-carboxylic acid ((2R,3S)-2-ethoxy-5-oxo-tetrahydro-furan-3-yl)-amide (VX-765), an orally available selective interleukin (IL)-converting enzyme/caspase-1 inhibitor, exhibits potent anti-inflammatory activities by inhibiting the release of IL-1beta and IL-18. J Pharmacol Exp Titer. 2007;321(2):509–516.

    Article  CAS  Google Scholar 

  187. Romero R, Durum S, Dinarello CA, Oyarzun E, Hobbins JC, Mitchell MD. Interleukin-1 stimulates prostaglandin biosynthesis by human amnion. Prostaglandins. 1989;37(1):13–22.

    Article  CAS  PubMed  Google Scholar 

  188. Hertelendy F, Romero R, Molnar M, Todd H, Baidassare JJ. Cytokine-initiated signal transduction in human myometrial cells. Am J Reprod Immunol. 1993;30(2-3):49–57.

    Article  CAS  PubMed  Google Scholar 

  189. Belt AR, Baidassare JJ, Molnar M, Romero R, Hertelendy F. The nuclear transcription factor NF-kappaB mediates interleukin-1 beta-induced expression of cyclooxygenase-2 in human myometrial cells. Am J Obstet Gynecol. 1999;181(2):359–366.

    Article  CAS  PubMed  Google Scholar 

  190. Watari M, Watari H, DiSanto ME, Chacko S, Shi GP, Strauss JF III. Pro-inflammatory cytokines induce expression of matrix-metabolizing enzymes in human cervical smooth muscle cells. Am J Pathol. 1999;154(6):1755–1762.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Hertelendy F, Rastogi P, Molnar M, Romero R. Interleukin-lbeta-induced prostaglandin E2 production in human myometrial cells: role of a pertussis toxin-sensitive component. Am J Reprod Immunol. 2001;45(3):142–147.

    Article  CAS  PubMed  Google Scholar 

  192. Heng YJ, Liong S, Permezel M, Rice GE, Di Quinzio MK, Georgiou HM. The interplay of the interleukin 1 system in pregnancy and labor. Reprod Sci. 2014;21(1):122–130.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  193. Stock O, Gordon L, Kapoor J, et al. Chorioamnionitis occurring in women with preterm rupture of the fetal membranes is associated with a dynamic increase in mRNAs coding cytokines in the maternal circulation. Reprod Sci. 2015;22(7):852–859.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Romero R, Mazor M, Tartakovsky B. Systemic administration of interleukin-1 induces preterm parturition in mice. Am J Obstet Gynecol. 1991;165(4 pt 1):969–971.

    Article  CAS  PubMed  Google Scholar 

  195. Romero R, Sepulveda W, Mazor M, et al. The natural interleukin-1 receptor antagonist in term and preterm parturition. Am J Obstet Gynecol. 1992;167(4 pt 1):863–872.

    Article  CAS  PubMed  Google Scholar 

  196. Gravett MG, Witkin SS, Haluska GJ, Edwards JL, Cook MJ, Novy MJ. An experimental model for intraamniotic infection and preterm labor in rhesus monkeys. Am J Obstet Gynecol. 1994;171(6):1660–1667.

    Article  CAS  PubMed  Google Scholar 

  197. Witkin SS, Gravett MG, Haluska GJ, Novy MJ. Induction of interleukin-1 receptor antagonist in rhesus monkeys after intraamniotic infection with group B streptococci or interleukin-1 infusion. Am J Obstet Gynecol. 1994;171(6):1668–1672.

    Article  CAS  PubMed  Google Scholar 

  198. Baggia S, Gravett MG, Witkin SS, Haluska GJ, Novy MJ. Interleukin-1 beta intra-amniotic infusion induces tumor necrosis factor-alpha, prostaglandin production, and preterm contractions in pregnant rhesus monkeys. J Soc Gynecol Investig. 1996;3(3):121–126.

    Article  CAS  PubMed  Google Scholar 

  199. Vadillo-Ortega F, Sadowsky DW, Haluska GJ, et al. Identification of matrix metalloproteinase-9 in amniotic fluid and amniochorion in spontaneous labor and after experimental intrauterine infection or interleukin-1 beta infusion in pregnant rhesus monkeys. Am J Obstet Gynecol. 2002;186(1):128–138.

    Article  CAS  PubMed  Google Scholar 

  200. Sadowsky DW, Adams KM, Gravett MG, Witkin SS, Novy MJ. Preterm labor is induced by intraamniotic infusions of interleukin-1 beta and tumor necrosis factor-alpha but not by interleukin-6 or interleukin-8 in a nonhuman primate model. Am J Obstet Gynecol. 2006;195(6):1578–1589.

    Article  CAS  PubMed  Google Scholar 

  201. Aagaard K, Ganu R, Ma J, et al. Intraamniotic interleukin-1 (IL1β) induces histological choriamnionitis and alters the microbiome in a primate model of inflammatory preterm birth. Am J Obstet Gynecol. 2014;208(1):S218.

    Article  Google Scholar 

  202. Prince A, Ma J, Miller L, et al. Chorioamnionitis induced by intraamniotic injection of IL1, LPS or Ureaplasma parvum is associated with an altered microbiome in a primate model of inflammatory preterm birth. Am J Obstet Gynecol. 2014;212(1):S153.

    Article  Google Scholar 

  203. Presicce P, Senthamaraikannan P, Alvarez M, et al. Neutrophil recruitment and activation in decidua with intra-amniotic IL-1beta in the preterm rhesus macaque. Biol Reprod. 2015;92(2):56.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nardhy Gomez-Lopez MSc, PhD or Roberto Romero MD, DMedSci.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gomez-Lopez, N., Romero, R., Xu, Y. et al. A Role for the Inflammasome in Spontaneous Labor at Term with Acute Histologic Chorioamnionitis. Reprod. Sci. 24, 934–953 (2017). https://doi.org/10.1177/1933719116675058

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719116675058

Keywords

Navigation