Skip to main content

Advertisement

Log in

NLR proteins and parasitic disease

  • IMMUNOLOGY AT THE UNIVERSITY OF IOWA
  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

Parasitic diseases are a serious global health concern. Many of the most common and most severe parasitic diseases, including Chagas’ disease, leishmaniasis, and schistosomiasis, are also classified as neglected tropical diseases and are comparatively less studied than infectious diseases prevalent in high income nations. The NLRs (nucleotide-binding domain leucine-rich-repeat-containing proteins) are cytosolic proteins known to be involved in pathogen detection and host response. The role of NLRs in the host response to parasitic infection is just beginning to be understood. The NLR proteins NOD1 and NOD2 have been shown to contribute to immune responses during Trypanosoma cruzi infection, Toxoplasma gondii infection, and murine cerebral malaria. The NLRP3 inflammasome is activated by T. cruzi and Leishmania amazonensis but also induces pathology during infection with schistosomes or malaria. Both the NLRP1 and NLRP3 inflammasomes respond to T. gondii infection. The NLRs may play crucial roles in human immune responses during parasitic infection, usually acting as innate immune sensors and driving the inflammatory response against invading parasites. However, this inflammatory response can either kill the invading parasite or be responsible for destructive pathology. Therefore, understanding the role of the NLR proteins will be critical to understanding the host defense against parasites as well as the fine balance between homeostasis and parasitic disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Schroder K, Tschopp J. The inflammasomes. Cell. 2010;140(6):821–32.

    Article  CAS  PubMed  Google Scholar 

  2. Davis BK, Wen H, Ting JP. The inflammasome NLRs in immunity, inflammation, and associated diseases. Annu Rev Immunol. 2011;29:707–35.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Franchi L, Munoz-Planillo R, Nunez G. Sensing and reacting to microbes through the inflammasomes. Nat Immunol. 2012;13(4):325–32.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Elinav E, et al. NLRP6 inflammasome regulates colonic microbial ecology and risk for colitis. Cell. 2011;145(5):745–57.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Wlodarska M, et al. NLRP6 inflammasome orchestrates the colonic host-microbial interface by regulating goblet cell mucus secretion. Cell. 2014;156(5):1045–59.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Eisenbarth SC, et al. NLRP10 is a NOD-like receptor essential to initiate adaptive immunity by dendritic cells. Nature. 2012;484(7395):510–3.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Joly S, et al. Cutting edge: Nlrp10 is essential for protective antifungal adaptive immunity against Candida albicans. J Immunol. 2012;189(10):4713–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Allen IC, et al. NLRP12 suppresses colon inflammation and tumorigenesis through the negative regulation of noncanonical NF-κB signaling. Immunity. 2012;36(5):742–54.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Arthur JC, et al. Cutting edge: NLRP12 controls dendritic and myeloid cell migration to affect contact hypersensitivity. J Immunol. 2010;185(8):4515–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Zaki MH, et al. The NOD-like receptor NLRP12 attenuates colon inflammation and tumorigenesis. Cancer Cell. 2011;20(5):649–60.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Zhang L, et al. NLRC3, a member of the NLR family of proteins, is a negative regulator of innate immune signaling induced by the DNA sensor STING. Immunity. 2014;40(3):329–41.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Vladimer GI, et al. The NLRP12 inflammasome recognizes Yersinia pestis. Immunity. 2012;37(1):96–107.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Faustin B, et al. Reconstituted NALP1 inflammasome reveals two-step mechanism of caspase-1 activation. Mol Cell. 2007;25(5):713–24.

    Article  CAS  PubMed  Google Scholar 

  14. Hsu LC, et al. A NOD2-NALP1 complex mediates caspase-1-dependent IL-1β secretion in response to Bacillus anthracis infection and muramyl dipeptide. Proc Natl Acad Sci USA. 2008;105(22):7803–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Terra JK, et al. Cutting edge: resistance to Bacillus anthracis infection mediated by a lethal toxin sensitive allele of Nalp1b/Nlrp1b. J Immunol. 2010;184(1):17–20.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Yang J, et al. Human NAIP and mouse NAIP1 recognize bacterial type III secretion needle protein for inflammasome activation. Proc Natl Acad Sci USA. 2013;110(35):14408–13.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Zhao Y, et al. The NLRC4 inflammasome receptors for bacterial flagellin and type III secretion apparatus. Nature. 2011;477(7366):596–600.

    Article  CAS  PubMed  Google Scholar 

  18. Kofoed EM, Vance RE. Innate immune recognition of bacterial ligands by NAIPs determines inflammasome specificity. Nature. 2011;477(7366):592–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Miao YC, Liu CJ. ATP-binding cassette-like transporters are involved in the transport of lignin precursors across plasma and vacuolar membranes. Proc Natl Acad Sci USA. 2010;107(52):22728–33.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Tenthorey JL, et al. Molecular basis for specific recognition of bacterial ligands by NAIP/NLRC4 inflammasomes. Mol Cell. 2014;54(1):17–29.

  21. Rayamajhi M, et al. Cutting edge: mouse NAIP1 detects the type III secretion system needle protein. J Immunol. 2013;191(8):3986–9.

    Article  CAS  PubMed  Google Scholar 

  22. Qu Y, et al. Phosphorylation of NLRC4 is critical for inflammasome activation. Nature. 2012;490(7421):539–42.

    Article  CAS  PubMed  Google Scholar 

  23. Hornung V, et al. AIM2 recognizes cytosolic dsDNA and forms a caspase-1-activating inflammasome with ASC. Nature. 2009;458(7237):514–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Fernandes-Alnemri T, et al. AIM2 activates the inflammasome and cell death in response to cytoplasmic DNA. Nature. 2009;458(7237):509–13.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Roberts TL, et al. HIN-200 proteins regulate caspase activation in response to foreign cytoplasmic DNA. Science. 2009;323(5917):1057–60.

    Article  CAS  PubMed  Google Scholar 

  26. Kalantari P, et al. Dual engagement of the NLRP3 and AIM2 inflammasomes by Plasmodium-derived hemozoin and DNA during malaria. Cell Rep. 2014;6(1):196–210.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Jones JW, et al. Absent in melanoma 2 is required for innate immune recognition of Francisella tularensis. Proc Natl Acad Sci USA. 2010;107(21):9771–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Adamczak SE, et al. Pyroptotic neuronal cell death mediated by the AIM2 inflammasome. J Cereb Blood Flow Metab. 2014;34(4):621–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Cassel SL, Sutterwala FS. Sterile inflammatory responses mediated by the NLRP3 inflammasome. Eur J Immunol. 2010;40(3):607–11.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Wen H, Miao EA, Ting JP. Mechanisms of NOD-like receptor-associated inflammasome activation. Immunity. 2013;39(3):432–41.

    Article  CAS  PubMed  Google Scholar 

  31. Horng T. Calcium signaling and mitochondrial destabilization in the triggering of the NLRP3 inflammasome. Trends Immunol. 2014;35(6):253–61.

  32. Fitzgerald KA. NLR-containing inflammasomes: central mediators of host defense and inflammation. Eur J Immunol. 2010;40(3):595–8.

    Article  CAS  PubMed  Google Scholar 

  33. Philpott DJ, et al. NOD proteins: regulators of inflammation in health and disease. Nat Rev Immunol. 2014;14(1):9–23.

    Article  CAS  PubMed  Google Scholar 

  34. Rubino SJ, et al. Nod-like receptors in the control of intestinal inflammation. Curr Opin Immunol. 2012;24(4):398–404.

    Article  CAS  PubMed  Google Scholar 

  35. Moreira LO, Zamboni DS. NOD1 and NOD2 Signaling in Infection and Inflammation. Front Immunol. 2012;3:328.

    Article  PubMed Central  PubMed  Google Scholar 

  36. Silva GK, et al. Cutting edge: nucleotide-binding oligomerization domain 1-dependent responses account for murine resistance against Trypanosoma cruzi infection. J Immunol. 2010;184(3):1148–52.

    Article  CAS  PubMed  Google Scholar 

  37. Cui J, et al. NLRC5 negatively regulates the NF-κB and type I interferon signaling pathways. Cell. 2010;141(3):483–96.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Benko S, et al. NLRC5 limits the activation of inflammatory pathways. J Immunol. 2010;185(3):1681–91.

    Article  CAS  PubMed  Google Scholar 

  39. Hotez PJ, et al. The neglected tropical diseases of Latin America and the Caribbean: a review of disease burden and distribution and a roadmap for control and elimination. PLoS Negl Trop Dis. 2008;2(9):e300.

    Article  PubMed Central  PubMed  Google Scholar 

  40. Tanowitz HB, et al. Perspectives on Trypanosoma cruzi-induced heart disease (Chagas disease). Prog Cardiovasc Dis. 2009;51(6):524–39.

    Article  PubMed Central  PubMed  Google Scholar 

  41. Teixeira MM, Gazzinelli RT, Silva JS. Chemokines, inflammation and Trypanosoma cruzi infection. Trends Parasitol. 2002;18(6):262–5.

    Article  CAS  PubMed  Google Scholar 

  42. Bafica A, et al. Cutting edge: TLR9 and TLR2 signaling together account for MyD88-dependent control of parasitemia in Trypanosoma cruzi infection. J Immunol. 2006;177(6):3515–9.

    Article  CAS  PubMed  Google Scholar 

  43. Oliveira AC, et al. Expression of functional TLR4 confers proinflammatory responsiveness to Trypanosoma cruzi glycoinositolphospholipids and higher resistance to infection with T. cruzi. J Immunol. 2004;173(9):5688–96.

    Article  CAS  PubMed  Google Scholar 

  44. Caetano BC, et al. Requirement of UNC93B1 reveals a critical role for TLR7 in host resistance to primary infection with Trypanosoma cruzi. J Immunol. 2011;187(4):1903–11.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Campos MA, et al. Impaired production of proinflammatory cytokines and host resistance to acute infection with Trypanosoma cruzi in mice lacking functional myeloid differentiation factor 88. J Immunol. 2004;172(3):1711–8.

    Article  CAS  PubMed  Google Scholar 

  46. Goncalves VM, et al. NLRP3 controls Trypanosoma cruzi infection through a caspase-1-dependent IL-1R-independent NO production. PLoS Negl Trop Dis. 2013;7(10):e2469.

    Article  PubMed Central  PubMed  Google Scholar 

  47. Silva GK, et al. Apoptosis-associated speck-like protein containing a caspase recruitment domain inflammasomes mediate IL-1β response and host resistance to Trypanosoma cruzi infection. J Immunol. 2013;191(6):3373–83.

    Article  CAS  PubMed  Google Scholar 

  48. Julia V, Rassoulzadegan M, Glaichenhaus N. Resistance to Leishmania major induced by tolerance to a single antigen. Science. 1996;274(5286):421–3.

    Article  CAS  PubMed  Google Scholar 

  49. World Health Organization. Leishmaniasis; 2014. www.who.int/topics/leishmaniasis/en/ and www.who.int/mediacentre/factsheets/fs375/en/.

  50. Alvar J, et al. Leishmaniasis worldwide and global estimates of its incidence. PLoS ONE. 2012;7(5):e35671.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Blackwell JM, et al. Macrophage complement and lectin-like receptors bind Leishmania in the absence of serum. J Exp Med. 1985;162(1):324–31.

    Article  CAS  PubMed  Google Scholar 

  52. Da Silva RP, et al. CR1, the C3b receptor, mediates binding of infective Leishmania major metacyclic promastigotes to human macrophages. J Immunol. 1989;143(2):617–22.

    PubMed  Google Scholar 

  53. Wilson ME, Pearson RD. Roles of CR3 and mannose receptors in the attachment and ingestion of Leishmania donovani by human mononuclear phagocytes. Infect Immun. 1988;56(2):363–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  54. Mosser DM, Springer TA, Diamond MS. Leishmania promastigotes require opsonic complement to bind to the human leukocyte integrin Mac-1 (CD11b/CD18). J Cell Biol. 1992;116(2):511–20.

    Article  CAS  PubMed  Google Scholar 

  55. Wilson ME, Jeronimo SM, Pearson RD. Immunopathogenesis of infection with the visceralizing Leishmania species. Microb Pathog. 2005;38(4):147–60.

    Article  CAS  PubMed  Google Scholar 

  56. Olivier M, Gregory DJ, Forget G. Subversion mechanisms by which Leishmania parasites can escape the host immune response: a signaling point of view. Clin Microbiol Rev. 2005;18(2):293–305.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Kaye P, Scott P. Leishmaniasis: complexity at the host-pathogen interface. Nat Rev Microbiol. 2011;9(8):604–15.

    Article  CAS  PubMed  Google Scholar 

  58. Monteforte GM, et al. Genetically resistant mice lacking IL-18 gene develop Th1 response and control cutaneous Leishmania major infection. J Immunol. 2000;164(11):5890–3.

    Article  CAS  PubMed  Google Scholar 

  59. Ohkusu K, et al. Potentiality of interleukin-18 as a useful reagent for treatment and prevention of Leishmania major infection. Infect Immun. 2000;68(5):2449–56.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Xin L, Li Y, Soong L. Role of interleukin-1β in activating the CD11c(high) CD45RB-dendritic cell subset and priming Leishmania amazonensis-specific CD4+ T cells in vitro and in vivo. Infect Immun. 2007;75(10):5018–26.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Voronov E, et al. IL-1-induced inflammation promotes development of leishmaniasis in susceptible BALB/c mice. Int Immunol. 2010;22(4):245–57.

    Article  CAS  PubMed  Google Scholar 

  62. Kautz-Neu K, et al. IL-1 signalling is dispensable for protective immunity in Leishmania-resistant mice. Exp Dermatol. 2011;20(1):76–8.

    Article  CAS  PubMed  Google Scholar 

  63. Fettelschoss A, et al. Inflammasome activation and IL-1β target IL-1α for secretion as opposed to surface expression. Proc Natl Acad Sci USA. 2011;108(44):18055–60.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  64. Von Stebut E, et al. Interleukin 1α promotes Th1 differentiation and inhibits disease progression in Leishmania major-susceptible BALB/c mice. J Exp Med. 2003;198(2):191–9.

    Article  Google Scholar 

  65. Lima-Junior DS, et al. Inflammasome-derived IL-1β production induces nitric oxide-mediated resistance to Leishmania. Nat Med. 2013;19(7):909–15.

    Article  CAS  PubMed  Google Scholar 

  66. Ji J, Sun J, Soong L. Impaired expression of inflammatory cytokines and chemokines at early stages of infection with Leishmania amazonensis. Infect Immun. 2003;71(8):4278–88.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  67. Soong L, et al. Role of CD4+ T cells in pathogenesis associated with Leishmania amazonensis infection. J Immunol. 1997;158(11):5374–83.

    CAS  PubMed  Google Scholar 

  68. Moyes CL, et al. Defining the geographical range of the Plasmodium knowlesi reservoir. PLoS Negl Trop Dis. 2014;8(3):e2780.

    Article  PubMed Central  PubMed  Google Scholar 

  69. World Health Organization. World malaria report 2012. p. 1–249.

  70. Moxon CA, Grau GE, Craig AG. Malaria: modification of the red blood cell and consequences in the human host. Br J Haematol. 2011;154(6):670–79.

  71. Frevert U, Nacer A. Immunobiology of Plasmodium in liver and brain. Parasite Immunol. 2013;35(9–10):267–82.

    Article  CAS  PubMed  Google Scholar 

  72. Coban C, et al. Toll-like receptor 9 mediates innate immune activation by the malaria pigment hemozoin. J Exp Med. 2005;201(1):19–25.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  73. Krishnegowda G, et al. Induction of proinflammatory responses in macrophages by the glycosylphosphatidylinositols of Plasmodium falciparum: cell signaling receptors, glycosylphosphatidylinositol (GPI) structural requirement, and regulation of GPI activity. J Biol Chem. 2005;280(9):8606–16.

    Article  CAS  PubMed  Google Scholar 

  74. Gowda NM, Wu X, Gowda DC. The nucleosome (histone-DNA complex) is the TLR9-specific immunostimulatory component of Plasmodium falciparum that activates DCs. PLoS ONE. 2011;6(6):e20398.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  75. Parroche P, et al. Malaria hemozoin is immunologically inert but radically enhances innate responses by presenting malaria DNA to Toll-like receptor 9. Proc Natl Acad Sci USA. 2007;104(6):1919–24.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  76. Ockenhouse CF, et al. Common and divergent immune response signaling pathways discovered in peripheral blood mononuclear cell gene expression patterns in presymptomatic and clinically apparent malaria. Infect Immun. 2006;74(10):5561–73.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  77. Finney CA, et al. Disruption of Nod-like receptors alters inflammatory response to infection but does not confer protection in experimental cerebral malaria. Am J Trop Med Hyg. 2009;80(5):718–22.

    CAS  PubMed  Google Scholar 

  78. Griffith JW, et al. Pure Hemozoin is inflammatory in vivo and activates the NALP3 inflammasome via release of uric acid. J Immunol. 2009;183(8):5208–20.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  79. Dostert C, et al. Malarial hemozoin is a Nalp3 inflammasome activating danger signal. PLoS ONE. 2009;4(8):e6510.

    Article  PubMed Central  PubMed  Google Scholar 

  80. Shio MT, et al. Malarial hemozoin activates the NLRP3 inflammasome through Lyn and Syk kinases. PLoS Pathog. 2009;5(8):e1000559.

    Article  PubMed  Google Scholar 

  81. Reimer T, et al. Experimental cerebral malaria progresses independently of the Nlrp3 inflammasome. Eur J Immunol. 2010;40(3):764–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  82. Kordes M, Matuschewski K, Hafalla JC. Caspase-1 activation of interleukin-1β (IL-1β) and IL-18 is dispensable for induction of experimental cerebral malaria. Infect Immun. 2011;79(9):3633–41.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  83. Coban C, et al. Immunogenicity of whole-parasite vaccines against Plasmodium falciparum involves malarial hemozoin and host TLR9. Cell Host Microbe. 2010;7(1):50–61.

    Article  CAS  PubMed  Google Scholar 

  84. Zhou J, et al. Opsonization of malaria-infected erythrocytes activates the inflammasome and enhances inflammatory cytokine secretion by human macrophages. Malar J. 2012;11:343.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  85. Ataide MA, et al. Malaria-induced NLRP12/NLRP3-dependent caspase-1 activation mediates inflammation and hypersensitivity to bacterial superinfection. PLoS Pathog. 2014;10(1):e1003885.

    Article  PubMed Central  PubMed  Google Scholar 

  86. Flegr J, et al. Toxoplasmosis—a global threat. Correlation of latent toxoplasmosis with specific disease burden in a set of 88 countries. PLoS ONE. 2014;9(3):e90203.

    Article  PubMed Central  PubMed  Google Scholar 

  87. Robert-Gangneux F, Darde ML. Epidemiology of and diagnostic strategies for toxoplasmosis. Clin Microbiol Rev. 2012;25(2):264–96.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  88. Michailowsky V, et al. Pivotal role of interleukin-12 and interferon-γ axis in controlling tissue parasitism and inflammation in the heart and central nervous system during Trypanosoma cruzi infection. Am J Pathol. 2001;159(5):1723–33.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  89. Cardillo F, et al. Regulation of Trypanosoma cruzi infection in mice by γ interferon and interleukin 10: role of NK cells. Infect Immun. 1996;64(1):128–34.

    PubMed Central  CAS  PubMed  Google Scholar 

  90. Shaw MH, et al. T cell-intrinsic role of Nod2 in promoting type 1 immunity to Toxoplasma gondii. Nat Immunol. 2009;10(12):1267–74.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  91. Witola WH, et al. NALP1 influences susceptibility to human congenital toxoplasmosis, proinflammatory cytokine response, and fate of Toxoplasma gondii-infected monocytic cells. Infect Immun. 2011;79(2):756–66.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  92. Ewald SE, Chavarria-Smith J, Boothroyd JC. NLRP1 is an inflammasome sensor for Toxoplasma gondii. Infect Immun. 2014;82(1):460–8.

    Article  PubMed Central  PubMed  Google Scholar 

  93. Gov L, et al. Human innate immunity to Toxoplasma gondii is mediated by host caspase-1 and ASC and parasite GRA15. MBio. 2013;4(4):e0255-13.

  94. Gorfu G, et al. Dual role for inflammasome sensors NLRP1 and NLRP3 in murine resistance to Toxoplasma gondii. MBio 2014;5(1):e01117-13.

  95. World Health Organization. Schistosomiasis: progress report 2001–2011, strategic plan 2012–2020. Geneva: World Health Organization; 2013. http://apps.who.int/iris/handle/10665/78074#sthash.H3fFKrLo.dpuf.

  96. Fairfax K, et al. Th2 responses in schistosomiasis. Semin Immunopathol. 2012;34(6):863–71.

    Article  PubMed  Google Scholar 

  97. Maizels RM, et al. Regulation of pathogenesis and immunity in helminth infections. J Exp Med. 2009;206(10):2059–66.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  98. Jenkins SJ, et al. Schistosome larvae stimulate macrophage cytokine production through TLR4-dependent and -independent pathways. Int Immunol. 2005;17(11):1409–18.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  99. Ritter M, et al. Schistosoma mansoni triggers Dectin-2, which activates the Nlrp3 inflammasome and alters adaptive immune responses. Proc Natl Acad Sci USA. 2010;107(47):20459–64.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was support in part by Grants R01 AI076233 (MEW) and NIH R01 AI087630 (F.S.S.) from the National Institutes of Health and by and grants 1i01BX001983 and 5I01BX000536 from the Department of Veterans’ Affairs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mary E. Wilson.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Clay, G.M., Sutterwala, F.S. & Wilson, M.E. NLR proteins and parasitic disease. Immunol Res 59, 142–152 (2014). https://doi.org/10.1007/s12026-014-8544-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12026-014-8544-x

Keywords

Navigation