Skip to main content

Advertisement

Log in

Behavior and Brain Gene Expression Changes in Mice Exposed to Preimplantation and Prenatal Stress

  • Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Preimplantation culture of mouse embryos has been suggested to result in reduced anxiety-like behavior in adulthood. Here, we investigated the effects of in vitro fertilization (IVF), embryo culture, and different diets on anxiety-like behavior using the elevated plus maze (EPM). We hypothesized that exposure to suboptimal conditions during the preimplantation stage would interact with the suboptimal diet to alter behavior. The expression of genes related to anxiety was then assessed by quantitative real-time polymerase chain reaction in various brain regions. When fed a normal diet during gestation and a moderately high-fat Western diet (WD) postnatally, naturally conceived (NC) and IVF mice showed similar anxiety-like behavior on the EPM. However, when fed a low-protein diet prenatally and a high-fat diet postnatally (LP/HF), NC mice showed a modest increase in anxiety-like behavior, whereas IVF mice showed the opposite: a strongly reduced anxiety-like behavior on the EPM. The robust reduction in anxiety-like behavior in IVF males fed the LP/HF diets was, intriguingly, associated with reduced expression of MAO-A, CRFR2, and GABA markers in the hypothalamus and cortex. These findings are discussed in relation to the developmental origin of health and disease hypothesis and the 2-hit model, which suggests that 2 events, occurring at different times in development, can act synergistically with long-term consequences observed during adulthood.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rinaudo P, Wang E. Fetal programming and metabolic syndrome. Annu Rev Physiol. 2012;74:107–130.

    Article  CAS  PubMed  Google Scholar 

  2. Ravelli GP, Stein ZA, Susser MW. Obesity in young men after famine exposure in utero and early infancy. N Engl J Med. 295, 349–353 (1976).

    Article  CAS  PubMed  Google Scholar 

  3. Kwong WY, Wild AE, Roberts P, Willis AC, Fleming TP. Maternal undernutrition during the preimplantation period of rat development causes blastocyst abnormalities and programming of postnatal hypertension. Development. 2000;127(19):4195–4202.

    CAS  PubMed  Google Scholar 

  4. Barker DJ. Mothers, Babies and Health in Later Life. Glasgow: Churchill Livingston; 1998.

    Google Scholar 

  5. O’Brien PMS, Wheeler T, Barker DJP. Foetal Programming: Influences on Development and Disease in Later Life. London: RCOG Press; 1999.

    Google Scholar 

  6. Barker DJ, Osmond C, Simmonds SJ, Wield GA. The relation of small head circumference and thinness at birth to death from cardiovascular disease in adult life. BMJ. 1993;306(6875):422–426.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. McCormack VA, dos Santos Silva I, De Stavola BL, Mohsen R, Leon DA, Lithell HO. Fetal growth and subsequent risk of breast cancer: results from long term follow up of Swedish cohort. BMJ. 2003;326(7383):248.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Roseboom TJ, van der Meulen JH, Osmond C, et al. Coronary heart disease after prenatal exposure to the Dutch famine, 1944– 1945. Heart. 2000;84(6):595–598.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Richards M, Hardy R, Kuh D, Wadsworth ME. Birth weight and cognitive function in the British 1946 birth cohort: longitudinal population based study. BMJ. 2001;322(7280):199–203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Cookson H, Granell R, Joinson C, Ben-Shlomo Y, Henderson AJ. Mothers’ anxiety during pregnancy is associated with asthma in their children. J Allergy Clin Immunol. 2009;123(4):847–853. e811.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Gardner DK. Changes in requirements and utilization of nutrients during mammalian preimplantation embryo development and their significance in embryo culture. Theriogenology. 1998; 49(1):83–102.

    Article  CAS  PubMed  Google Scholar 

  12. Abe H, Yamashita S, Itoh T, Satoh T, Hoshi H. Ultrastructure of bovine embryos developed from in vitro-matured and -fertilized oocytes: comparative morphological evaluation of embryos cultured either in serum-free medium or in serum-supplemented medium. Mol Reprod Dev. 1999;53(3):325–335.

    Article  CAS  PubMed  Google Scholar 

  13. Byrne AT, Southgate J, Brison DR, Leese HJ. Analysis of apoptosis in the preimplantation bovine embryo using TUNEL. J Reprod Fertil. 1999;117(1):97–105.

    Article  CAS  PubMed  Google Scholar 

  14. Bloise E, Lin W, Liu X, et al. Impaired placental nutrient transport in mice generated by in vitro fertilization. Endocrinology. 2012; 153(7):3457–3467.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lonergan P, Rizos D, Gutierrez-Adán A, et al. Temporal divergence in the pattern of messenger RNA expression in bovine embryos cultured from the zygote to blastocyst stage in vitro or in vivo. Biol Reprod. 2003;69(4): 1424–1431.

    Article  CAS  PubMed  Google Scholar 

  16. Rizos D, Gutiérrez-Adán A, Pérez-Garnelo S, De La Fuente J, Boland MP, Lonergan P. Bovine embryo culture in the presence or absence of serum: implications for blastocyst development, cryotolerance, and messenger RNA expression. Biol Reprod. 2003;68(l):236–243.

    Article  CAS  PubMed  Google Scholar 

  17. Rizos D, Lonergan P, Boland MP, et al. Analysis of differential messenger RNA expression between bovine blastocysts produced in different culture systems: implications for blastocyst quality. Biol Reprod. 2002;66(3):589–595.

    Article  CAS  PubMed  Google Scholar 

  18. Giritharan G, Talbi S, Donjacour A, Di Sebastiano F, Dobson AT, Rinaudo PF. Effect of in vitro fertilization on gene expression and development of mouse preimplantation embryos. Reproduction. 2007;134(l):63–72.

    Article  CAS  PubMed  Google Scholar 

  19. Rinaudo P, Schultz RM. Effects of embryo culture on global pattern of gene expression in preimplantation mouse embryos. Reproduction. 2004;128(3):301–311.

    Article  CAS  PubMed  Google Scholar 

  20. Rinaudo PF, Giritharan G, Talbi S, Dobson AT, Schultz RM. Effects of oxygen tension on gene expression in preimplantation mouse embryos. Fertil Steril. 2006;86(4 suppl): 1252–1265, 1265 el251–1236.

    Article  CAS  PubMed  Google Scholar 

  21. Ecker DJ, Stein P, Xu Z, et al. Long-term effects of culture of preimplantation mouse embryos on behavior. Proc Natl Acad Sci U S A. 2004;101(6):1595–1600.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Fernandez-Gonzalez R., et al. Long-term effect of in vitro culture of mouse embryos with serum on mRNA expression of imprinting genes, development, and behavior. Proc Natl Acad Sci U S A. 2004;101(16):5880–5885.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Blanchard RJ, Blanchard DC, Rodgers J, Weiss SM. The characterization and modelling of antipredator defensive behavior. Neurosci Biobehav Rev. 1990;14(4):463–472.

    Article  CAS  PubMed  Google Scholar 

  24. Ozanne SE, Hales CN. Lifespan: catch-up growth and obesity in male mice. Nature. 2004;427(6973):411–412.

    Article  CAS  PubMed  Google Scholar 

  25. Delle Piane L, Lin W, Liu X, et al. Effect of the method of conception and embryo transfer procedure on mid-gestation placenta and fetal development in an IVF mouse model. Hum Reprod. 2010;25(8):2039–2046.

    Article  Google Scholar 

  26. Post AM, Weyers P, Holzer P, et al. Gene-environment interaction influences anxiety-like behavior in ethologically based mouse models. Behav Brain Res. 2011;218(1):99–105.

    Article  CAS  PubMed  Google Scholar 

  27. Spijker S. Dissection of rodent brain regions. In: Ka Wan Li, ed. Neuroproteomics, Neuromethods, 2011;57:13–26.

    Chapter  Google Scholar 

  28. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25(4):402–408.

    CAS  PubMed  Google Scholar 

  29. Pellow S, Chopin P, File SE, Briley M. Validation of open: closed arm entries in an elevated plus-maze as a measure of anxiety in the rat. J Neurosci Methods. 1985;14(3):149–167.

    Article  CAS  PubMed  Google Scholar 

  30. Hovatta O. Methods for cryopreservation of human ovarian tissue. Reprod Biomed Online. 2005;10(6):729–734.

    Article  PubMed  Google Scholar 

  31. Strata F, Coq JO, Byl N, Merzenich MM. Effects of sensorimotor restriction and anoxia on gait and motor cortex organization: implications for a rodent model of cerebral palsy. Neuroscience. 2004;129(1):141–156.

    Article  CAS  PubMed  Google Scholar 

  32. Montgomery KC. The relation between fear induced by novel stimulation and exploratory drive. J Comp Physiol Psychol. 1955;48(4):254–260.

    Article  CAS  PubMed  Google Scholar 

  33. Handley SL, Mithani S. Effects of alpha-adrenoceptor agonists and antagonists in a maze-exploration model of ‘fear’-motivated behaviour. Naunyn Schmiedebergs Arch Pharmacol. 1984; 327(l):l–5.

    Article  CAS  PubMed  Google Scholar 

  34. Lister RG. The use of a plus-maze to measure anxiety in the mouse. Psychopharmacology. 1987;92(2):180–185.

    Article  CAS  PubMed  Google Scholar 

  35. Hogg S. A review of the validity and variability of the elevated plus-maze as an animal model of anxiety. Pharm Biochem Behav. 1996;54(l):21–30.

    Article  CAS  Google Scholar 

  36. Prasad A, Prasad C. Short-term consumption of a diet rich in fat decreases anxiety response in adult male rats. Physiol Behav. 1996;60(3):1039–1042.

    Article  CAS  PubMed  Google Scholar 

  37. Almeida SS, de Oliveira LM, Graeff FG. Early life protein malnutrition changes exploration of the elevated plus-maze and reactivity to anxiolytics. Psychopharmacology. 1991;103(4): 513–518.

    Article  CAS  PubMed  Google Scholar 

  38. Almeida SS, Garcia RA, Cibien MMR, et al. The ontogeny of exploratory behaviors in early-protein-malnourished rats exposed to the elevated plus-maze test. Psychobiology. 1994; 22(4):283–288.

    Google Scholar 

  39. Almeida SS, Tonkiss J, Galler JR. Prenatal protein malnutrition affects exploratory behavior of female rats in the elevated plus-maze test. Physiol Behav. 1996;60(2):675–680.

    Article  CAS  PubMed  Google Scholar 

  40. Steiner MA, Lecourt H, Rakotoariniaina A, Jenck F. Favoured genetic background for testing anxiolytics in the fear-potentiated and light-enhanced startle paradigms in the rat. Behav Brain Res. 2011;221(l):34–42.

    Article  CAS  PubMed  Google Scholar 

  41. Millan MJ. The neurobiology and control of anxious states. Prog Neurobiol. 2003 ;70(2): 83–244.

    Article  CAS  PubMed  Google Scholar 

  42. Holmes A. Targeted gene mutation approaches to the study of anxiety-like behavior in mice. Neurosci Biobehav Rev. 2001; 25(3):261–273.

    Article  CAS  PubMed  Google Scholar 

  43. van Ameringen M, Mancini C, Farvolden P, Oakman J. Drugs in development for social anxiety disorder: more to social anxiety than meets the SSRI. Expert Opin Investig Drugs. 2000;9(10): 2215–2231.

    Article  PubMed  Google Scholar 

  44. Nemeroff CB. The role of GABA in the pathophysiology and treatment of anxiety disorders. Psychopharmacol Bull. 2003; 37(4):133–146.

    PubMed  Google Scholar 

  45. Raud S, Siitt S, Luuk H, et al. Relation between increased anxiety and reduced expression of alphal and alpha2 subunits of GABA(A) receptors in Wfsl-deficient mice. Neurosci Lett. 2009;460(2): 138–142.

    Article  CAS  PubMed  Google Scholar 

  46. Nishikawa H, Hata T, Itoh E, Funakami Y. A role for corticotropin-releasing factor in repeated cold stress-induced anxiety-like behavior during forced swimming and elevated plus-maze tests in mice. Biol Pharm Bull. 2004;27(3):352–356.

    Article  CAS  PubMed  Google Scholar 

  47. Koob GF. Corticotropin-releasing factor, norepinephrine, and stress. Biol Psychiatry. 1999;46(9):1167–1180.

    Article  CAS  PubMed  Google Scholar 

  48. Perrin MH, Donaldson CJ, Chen R, Lewis KA, Vale WW. Cloning and functional expression of a rat brain corticotropin releasing factor (CRF) receptor. Endocrinology. 1993;133(6):3058–3061.

    Article  CAS  PubMed  Google Scholar 

  49. Sutton RE, Koob GF, Le Moal M, Rivier J, Vale W. Corticotropin releasing factor produces behavioural activation in rats. Nature. 1982;297(5864):331–333.

    Article  CAS  PubMed  Google Scholar 

  50. Butler PD, Weiss JM, Stout JC, Nemeroff CB. Corticotropin-releasing factor produces fear-enhancing and behavioral activating effects following infusion into the locus coeruleus. J Neurosci. 1990;10(1):176–183.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Makino S, Nishiyama M, Asaba K, Gold PW, Hashimoto K. Altered expression of type 2 CRH receptor mRNA in the VMH by glucocorticoids and starvation. Am J Physiol. 1998; 275(4 pt 2):R1138–R1145.

    CAS  PubMed  Google Scholar 

  52. Kishimoto T, Radulovic J, Radulovic M, et al. Deletion of crhr2 reveals an anxiolytic role for corticotropin-releasing hormone receptor-2. Nat Genet. 2000;24(4):415–419.

    Article  CAS  PubMed  Google Scholar 

  53. Bale TL, Contarino A, Smith GW, et al. Mice deficient for corticotropin-releasing hormone receptor-2 display anxiety-like behaviour and are hypersensitive to stress. Nat Genet. 2000; 24(4):410–414.

    Article  CAS  PubMed  Google Scholar 

  54. Coste SC, Kesterson RA, Heldwein KA, et al. Abnormal adaptations to stress and impaired cardiovascular function in mice lacking corticotropin-releasing hormone receptor-2. Nat Genet. 2000;24(4):403–409.

    Article  CAS  PubMed  Google Scholar 

  55. Brunner HG, Nelen M, Breakefield XO, Ropers HH, van Oost BA. Abnormal behavior associated with a point mutation in the structural gene for monoamine oxidase A. Science. 1993; 262(5133):578–580.

    Article  CAS  PubMed  Google Scholar 

  56. Du L, Bakish D, Ravindran A, Hrdina PD. MAO-A gene polymorphisms are associated with major depression and sleep disturbance in males. Neuroreport. 2004;15(13):2097–2101.

    Article  CAS  PubMed  Google Scholar 

  57. Vishnivetskaya GB, Skrinskaya JA, Seif I, Popova NK. Effect of MAO A deficiency on different kinds of aggression and social investigation in mice. Aggressive Behav. 2007;33(l):l–6.

    Article  CAS  Google Scholar 

  58. Lee AK, Mojtahed-Jaberi M, Kyriakou T, et al. Effect of high-fat feeding on expression of genes controlling availability of dopamine in mouse hypothalamus. Nutrition. 2010;26(4):411–422.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Bortolato M, Chen K, Godar SC, et al. Social deficits and per-severative behaviors, but not overt aggression, in MAO-A hypomorphic mice. Neuropsychopharmacology. 2011;36(13): 2674–2688.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Smythe GA, Bradshaw JE, Vining RF. Hypothalamic monoamine control of stress-induced adrenocorticotropin release in the rat. Endocrinology. 1983;113(3):1062–1071.

    Article  CAS  PubMed  Google Scholar 

  61. Godar SC, Bortolato M, Frau R, Dousti M, Chen K, Shih JC. Maladaptive defensive behaviours in monoamine oxidase A-deficient mice. Int J Neuropsychopharmacol. 2011;14(9):1195–1207.

    Article  CAS  PubMed  Google Scholar 

  62. Ai J, Liang F, Zhou H, et al. Mechanism of impaired baroreflex sensitivity in Wistar rats fed a high-fat and -carbohydrate diet. Br J Nutr. 2010;104(2):291–297.

    Article  CAS  PubMed  Google Scholar 

  63. Poulter MO, Du L, Zhurov V, Merali Z, Anisman H. Plasticity of the GABA(A) receptor subunit cassette in response to stressors in reactive versus resilient mice. Neuroscience. 2010; 165(4): 1039–1051.

    Article  CAS  PubMed  Google Scholar 

  64. Donjacour A, Liu X, Lin W, Simbulan R, Rinaudo PF. In vitro fertilization affects growth and glucose metabolism in a sex-specific manner in an outbred mouse model. Biol Reprod. 2014;90(4):80.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Rexhaj E, Paoloni-Giacobino A, Rimoldi SF, et al. Mice generated by in vitro fertilization exhibit vascular dysfunction and shortened life span. J Clin Invest. 2013;123(12):5052–5060.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. An XL, Zou JX, Wu RY, et al. Strain and sex differences in anxiety-like and social behaviors in C57BL/6J and BALB/cJ mice. Exp Anim. 2011 ;60(2): 111–123.

    Article  CAS  PubMed  Google Scholar 

  67. Ruis MA, te Brake JH, Buwalda B, et al. Housing familiar male wildtype rats together reduces the long-term adverse behavioural and physiological effects of social defeat. Psychoneuroendocri-nology. 1999;24(3):285–300.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Rinaudo MD PhD.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Strata, F., Giritharan, G., Sebastiano, F.D. et al. Behavior and Brain Gene Expression Changes in Mice Exposed to Preimplantation and Prenatal Stress. Reprod. Sci. 22, 23–30 (2015). https://doi.org/10.1177/1933719114557900

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719114557900

Keywords

Navigation