Skip to main content

Advertisement

Log in

Identification and Characterization of Progesterone- and Estrogen-Regulated MicroRNAs in Mouse Endometrial Epithelial Cells

  • Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

In endometrial epithelial cells, progesterone (P4) functions in regulating the cell structure and opposing the effects of estrogen. However, the mechanisms of P4 that oppose the effects of estrogen remain unclear. MicroRNAs (miRNAs) are important posttranscriptional regulators that are involved in various physiological and pathological processes. Whether P4 directly induces miRNA expression to antagonize estrogen in endometrial epithelium is unclear. In this study, total RNAs were extracted from endometrial epithelium of ovariectomized mice, which were treated with estrogen alone or a combination of estrogen and P4. MicroRNA high-throughput sequencing with bioinformatics analysis was used to identify P4-induced miRNAs, predict their potential target genes, and analyze their possible biological functions. We observed that 146 mature miRNAs in endometrial epithelial cells were significantly upregulated by P4. These miRNAs were extensively involved in multiple biological processes. The miRNA-145a demonstrated a possible function in the antiproliferative action of P4 on endometrial epithelial cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tong W, Pollard JW. Progesterone inhibits estrogen-induced cyclin D1 and cdk4 nuclear translocation, cyclin E- and cyclin A-cdk2 kinase activation, and cell proliferation in uterine epithelial cells in mice. Mol Cell Biol. 1999;19(3):2251–2264.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Graham JD, Clarke CL. Physiological action of progesterone in target tissues. Endocr Rev. 1997;18(4):502–519.

    CAS  PubMed  Google Scholar 

  3. Chwalisz K, Stockemann K, Fritzemeier KH, Fuhrmann U. Modulation of oestrogenic effects by progesterone antagonists in the rat uterus. Hum Reprod Update. 1998;4(5):570–583.

    Article  CAS  PubMed  Google Scholar 

  4. van der Horst PH, Wang Y, van der Zee M, Burger CW, Blok LJ. Interaction between sex hormones and WNT/beta-catenin signal transduction in endometrial physiology and disease. Mol Cell Endocrinol. 2012;358(2):176–184.

    Article  PubMed  CAS  Google Scholar 

  5. Gholami K, Muniandy S, Salleh N. Progesterone downregulates oestrogen-induced expression of CFTR and SLC26A6 proteins and mRNA in rats’ uteri. J Biomed Biotechnol. 2012;2012:596084.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Frolova AI, Moley KH. Glucose transporters in the uterus: an analysis of tissue distribution and proposed physiological roles. Reproduction. 2011;142(2):211–220.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Martin L, Das RM, Finn CA. The inhibition by progesterone of uterine epithelial proliferation in the mouse. J Endocrinol. 1973;57(3):549–554.

    Article  CAS  PubMed  Google Scholar 

  8. Martin L, Finn CA, Trinder G. Hypertrophy and hyperplasia in the mouse uterus after oestrogen treatment: an autoradiographic study. J Endocrinol. 1973;56(1):133–144.

    Article  CAS  PubMed  Google Scholar 

  9. Martin L, Finn CA, Trinder G. DNA synthesis in the endometrium of progesterone-treated mice. J Endocrinol. 1973;56(2):303–307.

    Article  CAS  PubMed  Google Scholar 

  10. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116(2):281–297.

    Article  CAS  PubMed  Google Scholar 

  11. Vasudevan S, Tong Y, Steitz JA. Switching from repression to activation: microRNAs can up-regulate translation. Science. 2007;318(5858):1931–1934.

    Article  CAS  PubMed  Google Scholar 

  12. Gonzalez G, Behringer RR. Dicer is required for female reproductive tract development and fertility in the mouse. Mol Reprod Dev. 2009;76(7):678–688.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Nagaraja AK, Andreu-Vieyra C, Franco HL, et al. Deletion of Dicer in somatic cells of the female reproductive tract causes sterility. Mol Endocrinol. 2008;22(10):2336–2352.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hong X, Luense LJ, McGinnis LK, Nothnick WB, Christenson LK. Dicerl is essential for female fertility and normal development of the female reproductive system. Endocrinology. 2008;149(12):6207–6212.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hu SJ, Ren G, Liu JL, et al. MicroRNA expression and regulation in mouse uterus during embryo implantation. J Biol Chem. 2008;283(34):23473–23484.

    Article  CAS  PubMed  Google Scholar 

  16. Li R, Qiao J, Wang L, et al. MicroRNA array and microarray evaluation of endometrial receptivity in patients with high serum progesterone levels on the day of hCG administration. Reprod Biol Endocrinol. 2011;9:29.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Kuokkanen S, Chen B, Ojalvo L, Benard L, Santoro N, Pollard JW. Genomic profiling of microRNAs and messenger RNAs reveals hormonal regulation in microRNA expression in human endometrium. Biol Reprod. 2010;82(4):791–801.

    Article  CAS  PubMed  Google Scholar 

  18. Ohlsson Teague EM, Van der Hoek KH, Van der Hoek MB, et al. MicroRNA-regulated pathways associated with endometriosis. Mol Endocrinol. 2009;23(2):265–275.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Boren T, Xiong Y, Hakam A, et al. MicroRNAs and their target messenger RNAs associated with endometrial carcinogenesis. Gynecol Oncol. 2008;110(2):206–215.

    Article  CAS  PubMed  Google Scholar 

  20. Pan Q, Luo X, Toloubeydokhti T, Chegini N. The expression profile of micro-RNA in endometrium and endometriosis and the influence of ovarian steroids on their expression. Mol Hum Reprod. 2007;13(11):797–806.

    Article  CAS  PubMed  Google Scholar 

  21. Burney RO, Hamilton AE, Aghajanova L, et al. MicroRNA expression profiling of eutopic secretory endometrium in women with versus without endometriosis. Mol Hum Reprod. 2009;15(10):625–631.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yue L, Daikoku T, Hou X, et al. Cyclin G1 and cyclin G2 are expressed in the periimplantation mouse uterus in a cell-specific and progesterone-dependent manner: evidence for aberrant regulation with Hoxa-10 deficiency. Endocrinology. 2005;146(5):2424–2433.

    Article  CAS  PubMed  Google Scholar 

  23. Kover K, Liang L, Andrews GK, Dey SK. Differential expression and regulation of cytokine genes in the mouse uterus. Endocrinology. 1995;136(4):1666–1673.

    Article  CAS  PubMed  Google Scholar 

  24. Chung D, Das SK. Mouse primary uterine cell coculture system revisited: ovarian hormones mimic the aspects of in vivo uterine cell proliferation. Endocrinology. 2011;152(8):3246–3258.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Li R, Li Y, Kristiansen K, Wang J. SOAP: short oligonucleotide alignment program. Bioinformatics. 2008;24(5):713–714.

    Article  CAS  PubMed  Google Scholar 

  26. Vaz C, Ahmad HM, Sharma P, et al. Analysis of microRNA transcriptome by deep sequencing of small RNA libraries of peripheral blood. BMC Genomics. 2010;11:288.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Audic S, Claverie JM. The significance of digital gene expression profiles. Genome Res. 1997;7(10):986–995.

    Article  CAS  PubMed  Google Scholar 

  28. Backes C, Keller A, Kuentzer J, et al. Gene Trail—advanced gene set enrichment analysis. Nucleic Acids Res. 2007;35(Web Server issue):W186–W192.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Wang Q, Lu J, Zhang S, et al. Wnt6 is essential for stromal cell proliferation during decidualization in mice. Biol Reprod. 2013;88(1):5.

    Article  PubMed  CAS  Google Scholar 

  30. Das RM, Martin L. Progesterone inhibition of mouse uterine epithelial proliferation. J Endocrinol. 1973;59(1):205–206.

    Article  CAS  PubMed  Google Scholar 

  31. Bauersachs S, Ulbrich SE, Gross K, et al. Gene expression profiling of bovine endometrium during the oestrous cycle: detection of molecular pathways involved in functional changes. J Mol Endocrinol. 2005;34(3):889–908.

    Article  CAS  PubMed  Google Scholar 

  32. Kim ST, Moley KH. Regulation of facilitative glucose transporters and AKT/MAPK/PRKAA signaling via estradiol and progesterone in the mouse uterine epithelium. Biol Reprod. 2009;81(1):188–198.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wang Y, van der Zee M, Fodde R, Blok LJ. Wnt/Beta-catenin and sex hormone signaling in endometrial homeostasis and cancer. Oncotarget. 2010;1(7):674–684.

    PubMed  PubMed Central  Google Scholar 

  34. Behrens J, Jerchow BA, Wurtele M, et al. Functional interaction of an axin homolog, conductin, with beta-catenin, APC, and GSK3beta. Science. 1998;280(5363):596–599.

    Article  CAS  PubMed  Google Scholar 

  35. Wang Y, Hanifi-Moghaddam P, Hanekamp EE, et al. Progesterone inhibition of Wnt/beta-catenin signaling in normal endometrium and endometrial cancer. Clin Cancer Res. 2009;15(18):5784–5793.

    Article  CAS  PubMed  Google Scholar 

  36. Sherr CJ. Cancer cell cycles. Science. 1996;274(5293):1672–1677.

    Article  CAS  PubMed  Google Scholar 

  37. Chen B, Pan H, Zhu L, Deng Y, Pollard JW. Progesterone inhibits the estrogen-induced phosphoinositide 3-kinase–>AKT–>GSK-3beta–>cyclin D1–>pRB pathway to block uterine epithelial cell proliferation. Mol Endocrinol. 2005;19(8):1978–1990.

    Article  CAS  PubMed  Google Scholar 

  38. Cordes KR, Sheehy NT, White MP, et al. miR-145 and miR-143 regulate smooth muscle cell fate and plasticity. Nature. 2009;460(7256):705–710.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ostenfeld MS, Bramsen JB, Lamy P, et al. miR-145 induces caspase-dependent and -independent cell death in urothelial cancer cell lines with targeting of an expression signature present in Ta bladder tumors. Oncogene. 2010;29(7):1073–1084.

    Article  CAS  PubMed  Google Scholar 

  40. Wu Y, Liu S, Xin H, et al. Up-regulation of microRNA-145 promotes differentiation by repressing OCT4 in human endometrial adenocarcinoma cells. Cancer. 2011;117(17):3989–3998.

    Article  CAS  PubMed  Google Scholar 

  41. Ozen M, Creighton CJ, Ozdemir M, Ittmann M. Widespread deregulation of microRNA expression in human prostate cancer. Oncogene. 2008;27(12):1788–1793.

    Article  CAS  PubMed  Google Scholar 

  42. Ichimi T, Enokida H, Okuno Y, et al. Identification of novel microRNA targets based on microRNA signatures in bladder cancer. Int J Cancer. 2009;125(2):345–352.

    Article  CAS  PubMed  Google Scholar 

  43. Akao Y, Nakagawa Y, Naoe T. MicroRNA-143 and -145 in colon cancer. DNA Cell Biol. 2007;26(5):311–320.

    Article  CAS  PubMed  Google Scholar 

  44. Zhu H, Dougherty U, Robinson V, et al. EGFR signals downregulate tumor suppressors miR-143 and miR-145 in Western diet-promoted murine colon cancer: role of G1 regulators. Mol Cancer Res. 2011;9(7):960–975.

    Article  CAS  PubMed  Google Scholar 

  45. Shao Y, Qu Y, Dang S, Yao B, Ji M. MiR-145 inhibits oral squamous cell carcinoma (OSCC) cell growth by targeting c-Myc and Cdk6. Cancer Cell Int. 2013;13(1):51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Uchima FD, Edery M, Iguchi T, Bern HA. Growth of mouse endometrial luminal epithelial cells in vitro: functional integrity of the oestrogen receptor system and failure of oestrogen to induce proliferation. J Endocrinol. 1991;128(1):115–120.

    Article  CAS  PubMed  Google Scholar 

  47. Franco HL, Rubel CA, Large MJ, et al. Epithelial progesterone receptor exhibits pleiotropic roles in uterine development and function. FASEB J. 2012;26(3):1218–1227.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Cooke PS, Buchanan DL, Young P, et al. Stromal estrogen receptors mediate mitogenic effects of estradiol on uterine epithelium. Proc Natl Acad Sci USA. 1997;94(12):6535–6540.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kurita T, Young P, Brody JR, Lydon JP, O’Malley BW, Cunha GR. Stromal progesterone receptors mediate the inhibitory effects of progesterone on estrogen-induced uterine epithelial cell deoxyribonucleic acid synthesis. Endocrinology. 1998;139(11):4708–4713.

    Article  CAS  PubMed  Google Scholar 

  50. Li Q, Kannan A, DeMayo FJ, et al. The antiproliferative action of progesterone in uterine epithelium is mediated by Hand2. Science. 2011;331(6019):912–916.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kim JJ, Kurita T, Bulun SE. Progesterone action in endometrial cancer, endometriosis, uterine fibroids, and breast cancer. Endocr Rev. 2013;34(1):130–162.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Nothnick WB. The role of micro-RNAs in the female reproductive tract. Reproduction. 2012;143(5):559–576.

    Article  CAS  PubMed  Google Scholar 

  53. Cochrane DR, Spoelstra NS, Richer JK. The role of miRNAs in progesterone action. Mol Cell Endocrinol. 2012;357(1–2):50–59.

    Article  CAS  PubMed  Google Scholar 

  54. Klinge CM.miRNAs and estrogen action. Trends Endocrinol Metab. 2012;23(5):223–233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Toloubeydokhti T, Pan Q, Luo X, Bukulmez O, Chegini N. The expression and ovarian steroid regulation of endometrial micro-RNAs. Reprod Sci. 2008;15(10):993–1001.

    Article  PubMed  Google Scholar 

  56. Mouse Genome Database (MGD). http://www.informatics.jax.org. Accessed September 12, 2012.

  57. Rfam. http://www.sanger.ac.uk/resources/databases/rfam.html. Accessed September 20, 2012.

  58. Benjamin PL, Burge CB, Bartel PD. Conserved Seed Pairing, Often Flanked by Adenosines, Indicates that Thousands of Human Genes are MicroRNA Targets. Cell. 2005;120:15–20.

    Article  CAS  Google Scholar 

  59. Xiaowei W. miRDB: a microRNA target prediction and functional annotation database with a wiki interface. RNA. 14(6):1012–1017.

  60. Betel D, Wilson M, Gabow A, Marks DS, Sander C. The micro-RNA.org resource: targets and expression. Nucleic Acids Res. 2008;36 (Database Issue): D149–53.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-min Yue PhD.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, Dz., Yu, Ll., Qu, T. et al. Identification and Characterization of Progesterone- and Estrogen-Regulated MicroRNAs in Mouse Endometrial Epithelial Cells. Reprod. Sci. 22, 223–234 (2015). https://doi.org/10.1177/1933719114537714

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719114537714

Keywords

Navigation