Skip to main content
Log in

Endometrial microRNAs and their aberrant expression patterns

  • Review
  • Published:
Medical Molecular Morphology Aims and scope Submit manuscript

Abstract

MicroRNAs (miRNAs) are a class of small noncoding RNAs that regulate gene expression. They play fundamental roles in several biological processes, including cell differentiation and proliferation, embryo development, organ development, and organ metabolism. Besides regulating the physiological processes, miRNAs regulate various pathological conditions such as tumors, metastases, metabolic diseases, and osteoporosis. Although several studies have been performed on miRNAs, only few studies have described the miRNA expression and functions in human reproductive tract tissues. During menstruation, the human endometrium undergoes extensive cyclic morphological and biochemical modifications before embryo implantation. In addition to the ovarian steroid hormones (estrogen and progesterone), endometrial autocrine or paracrine factors and embryo-derived signals play a significant role in endometrial functions. miRNAs are considered key regulators of gene expression in the human endometrium and implantation process, and their aberrant expression levels are associated with the development of various disorders, including tumorigenesis. In this review, we summarize the studies that show the role of miRNAs in regulating the physiological conditions of the endometrium and the implantation process and discuss the aberrant expression of miRNAs in ectopic pregnancy, endometriosis, and endometrial cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    CAS  PubMed  Google Scholar 

  2. Harfe BD (2005) MicroRNAs in vertebrate development. Curr Opin Genet Dev 15:410–415

    CAS  PubMed  Google Scholar 

  3. Alvarez-Garcia I, Miska EA (2005) MicroRNA functions in animal development and human disease. Development 132:4653–4662

    CAS  PubMed  Google Scholar 

  4. Krutzfeldt J, Stoffel M (2006) MicroRNAs: a new class of regulatory genes affecting metabolism. Cell Metab 4:9–12

    CAS  PubMed  Google Scholar 

  5. Foley NH, O’Neill LA (2012) miR-107: a toll-like receptor-regulated miRNA dysregulated in obesity and type II diabetes. J Leukoc Biol 92:521–527

    CAS  PubMed  Google Scholar 

  6. Wang X, Sun S, Tong X, Ma Q, Di H, Fu T, Sun Z, Cai Y, Fan W, Wu Q, Li Y, Wang Q, Wang J (2017) MiRNA-154-5p inhibits cell proliferation and metastasis by targeting PIWIL1 in glioblastoma. Brain Res 1676:69–76

    CAS  PubMed  Google Scholar 

  7. Hesse E, Taipaleenmaki H (2019) MicroRNAs in bone metastasis. Curr Osteoporos Rep 17:122–128

    PubMed  Google Scholar 

  8. Hong BS, Ryu HS, Kim N, Kim J, Lee E, Moon H, Kim KH, Jin MS, Kwon NH, Kim S, Kim D, Chung DH, Jeong K, Kim K, Kim KY, Lee HB, Han W, Yun J, Kim JI, Noh DY, Moon HG (2019) Tumor suppressor miRNA-204-5p regulates growth, metastasis, and immune microenvironment remodeling in breast cancer. Cancer Res 79:1520–1534

    CAS  PubMed  Google Scholar 

  9. Kozomara A, Birgaoanu M, Griffiths-Jones S (2019) miRBase: from microRNA sequences to function. Nucleic Acids Res 47:D155–D162

    CAS  PubMed  Google Scholar 

  10. Baulcombe D (2004) RNA silencing in plants. Nature 431:356–363

    CAS  PubMed  Google Scholar 

  11. Pfeffer S, Zavolan M, Grässer FA, Chien M, Russo JJ, Ju J, John B, Enright AJ, Marks D, Sander C, Tuschl T (2004) Identification of virus-encoded microRNAs. Science 304:734–736

    CAS  PubMed  Google Scholar 

  12. Lee Y, Kim M, Han J, Yeom KH, Lee S, Baek SH, Kim VN (2004) MicroRNA genes are transcribed by RNA polymerase II. EMBO J 23:4051–4060

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J, Lee J, Provost P, Rådmark O, Kim S, Kim VN (2003) The nuclear RNase III Drosha initiates microRNA processing. Nature 425:415–419

    CAS  PubMed  Google Scholar 

  14. Bohnsack MT, Czaplinski K, Gorlich D (2004) Exportin 5 is a RanGTP-dependent dsRNA-binding protein that mediates nuclear export of pre-miRNAs. RNA 10:185–191

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Tijsterman M, Plasterk RH (2004) Dicers at RISC; the mechanism of RNAi. Cell 117:1–3

    CAS  PubMed  Google Scholar 

  16. Macfarlane LA, Murphy PR (2010) MicroRNA: biogenesis, function and role in cancer. Curr Genomics 11:537–561

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Meister G, Landthaler M, Patkaniowska A, Dorsett Y, Teng G, Tuschl T (2004) Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs. Mol Cell 15:185–197

    CAS  PubMed  Google Scholar 

  18. Liu J, Carmell MA, Rivas FV, Marsden CG, Thomson JM, Song JJ, Hammond SM, Joshua-Tor L, Hannon GJ (2004) Argonaute2 is the catalytic engine of mammalian RNAi. Science 305:1437–1441

    CAS  PubMed  Google Scholar 

  19. Grimson A, Farh KK, Johnston WK, Garrett-Engele P, Lim LP, Bartel DP (2007) MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol Cell 27:91–105

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Guo H, Ingolia NT, Weissman JS, Bartel DP (2010) Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature 466:835–840

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Krek A, Grün D, Poy MN, Wolf R, Rosenberg L, Epstein EJ, MacMenamin P, da Piedade I, Gunsalus KC, Stoffel M, Rajewsky N (2005) Combinatorial microRNA target predictions. Nat Genet 37:495–500

    CAS  PubMed  Google Scholar 

  22. Betel D, Wilson M, Gabow A, Marks DS, Sander C (2008) The microRNA.org resource: targets and expression. Nucleic Acids Res 36(Database issue):D149–D153

    CAS  PubMed  Google Scholar 

  23. Wong N, Wang X (2015) miRDB: an online resource for microRNA target prediction and functional annotations. Nucleic Acids Res 43(Database issue):D146–152

    CAS  PubMed  Google Scholar 

  24. Silvestro S, Bramanti P, Mazzon E (2019) Role of miRNAs in Alzheimer’s disease and possible fields of application. Int J Mol Sci 20(16):3979

    CAS  PubMed Central  Google Scholar 

  25. Liu Q, Peng F, Chen J (2019) The role of exosomal microRNAs in the tumor microenvironment of breast cancer. Int J Mol Sci 20(16):3884

    CAS  PubMed Central  Google Scholar 

  26. Diana A, Gaido G, Murtas D (2019) MicroRNA signature in human normal and tumoral neural stem cells. Int J Mol Sci 20(17):4123

    CAS  PubMed Central  Google Scholar 

  27. Cozar JM, Robles-Fernandez I, Rodriguez-Martinez A, Puche-Sanz I, Vazquez-Alonso F, Lorente JA, Martinez-Gonzalez LJ, Alvarez-Cubero MJ (2019) The role of miRNAs as biomarkers in prostate cancer. Mutat Res 781:165–174

    CAS  Google Scholar 

  28. Simón C, Martín JC, Pellicer A (2000) Paracrine regulators of implantation. Baillieres Best Pract Res Clin Obstet Gynaecol 14:815–826

    PubMed  Google Scholar 

  29. Strowitzki T, Germeyer A, Popovici R, von Wolff M (2006) The human endometrium as a fertility-determining factor. Hum Reprod Update 12:617–630

    PubMed  Google Scholar 

  30. Bergh PA, Navot D (1992) The impact of embryonic development and endometrial maturity on the timing of implantation. Fertil Steril 58:537–542

    CAS  PubMed  Google Scholar 

  31. Pan Q, Chegini N (2008) MicroRNA signature and regulatory functions in the endometrium during normal and disease states. Semin Reprod Med 26:479–493

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Mitchell PS, Parkin RK, Kroh EM, Fritz BR, Wyman SK, Pogosova-Agadjanyan EL, Peterson A, Noteboom J, O’Briant KC, Allen A, Lin DW, Urban N, Drescher CW, Knudsen BS, Stirewalt DL, Gentleman R, Vessella RL, Nelson PS, Martin DB, Tewari M (2008) Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci USA 105:10513–10518

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Liang J, Wang S, Wang Z (2017) Role of microRNAs in embryo implantation. Reprod Biol Endocrinol 15:90. https://doi.org/10.1186/s12958-017-0309-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Turchinovich A, Weiz L, Langheinz A, Burwinkel B (2011) Characterization of extracellular circulating microRNA. Nucleic Acids Res 39:7223–7233

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Turchinovich A, Weiz L, Burwinkel B (2012) Extracellular miRNAs: the mystery of their origin and function. Trends Biochem Sci 37:460–465

    CAS  PubMed  Google Scholar 

  36. Zaborowski MP, Balaj L, Breakefield XO, Lai CP (2015) Extracellular vesicles: composition, biological relevance, and methods of study. Bioscience 65:783–797

    PubMed  PubMed Central  Google Scholar 

  37. Kurian NK, Modi D (2019) Extracellular vesicle mediated embryo-endometrial cross talk during implantation and in pregnancy. J Assist Reprod Genet 36:189–198

    PubMed  Google Scholar 

  38. Gross N, Kropp J, Khatib H (2017) MicroRNA signaling in embryo development. Biology 6:34. https://doi.org/10.3390/biology6030034

    Article  CAS  PubMed Central  Google Scholar 

  39. Witwer KW, Hirschi KD (2014) Transfer and functional consequences of dietary microRNAs in vertebrates: concepts in search of corroboration: negative results challenge the hypothesis that dietary xenomiRs cross the gut and regulate genes in ingesting vertebrates, but important questions persist. BioEssays 36:394–406

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Mulcahy LA, Pink RC, Carter DR (2014) Routes and mechanisms of extracellular vesicle uptake. J Extracell Vesicles 3:1–14

    Google Scholar 

  41. Mittelbrunn M, Gutiérrez-Vázquez C, Villarroya-Beltri C, González S, Sánchez-Cabo F, González MÁ, Bernad A, Sánchez-Madrid F (2011) Unidirectional transfer of microRNA-loaded exosomes from T cells to antigen-presenting cells. Nat Commun 2:282. https://doi.org/10.1038/ncomms1285

    Article  CAS  PubMed  Google Scholar 

  42. Valadi H, Ekström K, Bossios A, Sjöstrand M, Lee JJ, Lötvall JO (2007) Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 9:654–659

    CAS  PubMed  Google Scholar 

  43. Kuokkanen S, Chen B, Ojalvo L, Benard L, Santoro N, Pollard JW (2010) Genomic profiling of microRNAs and messenger RNAs reveals hormonal regulation in microRNA expression in human endometrium. Biol Reprod 82:791–801

    CAS  PubMed  Google Scholar 

  44. Sha AG, Liu JL, Jiang XM, Ren JZ, Ma CH, Lei W, Su RW, Yang ZM (2011) Genome-wide identification of micro-ribonucleic acids associated with human endometrial receptivity in natural and stimulated cycles by deep sequencing. Fertil Steril 96:150–155

    CAS  PubMed  Google Scholar 

  45. Altmäe S, Martinez-Conejero JA, Esteban FJ, Ruiz-Alonso M, Stavreus-Evers A, Horcajadas JA, Salumets A (2013) MicroRNAs miR-30b, miR-30d, and miR-494 regulate human endometrial receptivity. Reprod Sci 20:308–317

    PubMed  PubMed Central  Google Scholar 

  46. Gellersen B, Brosens IA, Brosens JJ (2007) Decidualization of the human endometrium: mechanisms, functions, and clinical perspectives. Semin Reprod Med 25:445–453

    CAS  PubMed  Google Scholar 

  47. Kajihara T, Jones M, Fusi L, Takano M, Feroze-Zaidi F, Pirianov G, Mehmet H, Ishihara O, Higham JM, Lam EW, Brosens JJ (2006) Differential expression of FOXO1 and FOXO3a confers resistance to oxidative cell death upon endometrial decidualization. Mol Endocrinol 20:2444–2455

    CAS  PubMed  Google Scholar 

  48. Qian K, Hu L, Chen H, Li H, Liu N, Li Y, Ai J, Zhu G, Tang Z, Zhang H (2009) Hsa-miR-222 is involved in differentiation of endometrial stromal cells in vitro. Endocrinology 150:4734–4743

    CAS  PubMed  Google Scholar 

  49. Estella C, Herrer I, Moreno-Moya JM, Quiñonero A, Martínez S, Pellicer A, Simón C (2012) miRNA signature and Dicer requirement during human endometrial stromal decidualization in vitro. PLoS ONE 7:e41080

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Tochigi H, Kajihara T, Mizuno Y, Mizuno Y, Tamaru S, Kamei Y, Okazaki Y, Brosens JJ, Ishihara O (2017) Loss of miR-542-3p enhances IGFBP-1 expression in decidualizing human endometrial stromal cells. Sci Rep 7:40001

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Paul ABM, Sadek ST, Mahesan AM (2019) The role of microRNAs in human embryo implantation: a review. J Assist Reprod Genet 36:179–187

    PubMed  Google Scholar 

  52. Diedrich K, Fauser BC, Devroey P, Griesinger G, Evian Annual Reproduction (EVAR) Workshop Group (2007) The role of the endometrium and embryo in human implantation. Hum Reprod Update 13:365–377

    CAS  PubMed  Google Scholar 

  53. Cuman C, Van Sinderen M, Gantier MP, Rainczuk K, Sorby K, Rombauts L, Osianlis T, Dimitriadis E (2015) Human blastocyst secreted microRNA regulate endometrial epithelial cell adhesion. EBioMedicine 2:1528–1535

    PubMed  PubMed Central  Google Scholar 

  54. Rosenbluth EM, Shelton DN, Wells LM, Sparks AE, Van Voorhis BJ (2014) Human embryos secrete microRNAs into culture media—a potential biomarker for implantation. Fertil Steril 101:1493–1500

    CAS  PubMed  Google Scholar 

  55. Borges E Jr, Setti AS, Braga DP, Geraldo MV, Figueira RC, Iaconelli A Jr (2016) miR-142-3p as a biomarker of blastocyst implantation failure—a pilot study. JBRA Assist Reprod 20:200–205

    PubMed  Google Scholar 

  56. Capalbo A, Ubaldi FM, Cimadomo D, Noli L, Khalaf Y, Farcomeni A, Ilic D, Rienzi L (2016) MicroRNAs in spent blastocyst culture medium are derived from trophectoderm cells and can be explored for human embryo reproductive competence assessment. Fertil Steril 105:225–235

    CAS  PubMed  Google Scholar 

  57. Rosenbluth EM, Shelton DN, Sparks AE, Devor E, Christenson L, Van Voorhis BJ (2013) MicroRNA expression in the human blastocyst. Fertil Steril 99:855–861

    CAS  PubMed  Google Scholar 

  58. McCallie B, Schoolcraft WB, Katz-Jaffe MG (2010) Aberration of blastocyst microRNA expression is associated with human infertility. Fertil Steril 93:2374–2382

    CAS  PubMed  Google Scholar 

  59. Kresowik JD, Devor EJ, Van Voorhis BJ, Leslie KK (2014) MicroRNA-31 is significantly elevated in both human endometrium and serum during the window of implantation: a potential biomarker for optimum receptivity. Biol Reprod 91:1–6

    Google Scholar 

  60. Revel A, Achache H, Stevens J, Smith Y, Reich R (2011) MicroRNAs are associated with human embryo implantation defects. Hum Reprod 26:2830–2840

    CAS  PubMed  Google Scholar 

  61. Shi C, Shen H, Fan LJ, Guan J, Zheng XB, Chen X, Liang R, Zhang XW, Cui QH, Sun KK, Zhao ZR, Han HJ (2017) Endometrial microRNA signature during the window of implantation changed in patients with repeated implantation failure. Chin Med J 130:566–573

    PubMed  PubMed Central  Google Scholar 

  62. Barnhart KT (2009) Clinical practice. Ectopic pregnancy. N Engl J Med 361:379–387

    CAS  PubMed  Google Scholar 

  63. Farquhar CM (2005) Ectopic pregnancy. Lancet 366:583–591

    PubMed  Google Scholar 

  64. Zhao Z, Zhao Q, Warrick J, Lockwood CM, Woodworth A, Moley KH, Gronowski AM (2012) Circulating microRNA miR-323-3p as a biomarker of ectopic pregnancy. Clin Chem 58:896–905

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Miura K, Higashijima A, Mishima H, Miura S, Kitajima M, Kaneuchi M, Yoshiura K, Masuzaki H (2015) Pregnancy-associated microRNAs in plasma as potential molecular markers of ectopic pregnancy. Fertil Steril 103:1202–1208

    CAS  PubMed  Google Scholar 

  66. Burney RO, Giudice LC (2012) Pathogenesis and pathophysiology of endometriosis. Fertil Steril 98:511–519

    CAS  PubMed  Google Scholar 

  67. Simpson JA (1945) The pathogenesis of postsalpingectomy endometriosis in laparotomy scars. Am J Obstet Gynecol 50:597–620

    CAS  PubMed  Google Scholar 

  68. Bulun SE (2009) Endometriosis. N Engl J Med 360:268–279

    CAS  PubMed  Google Scholar 

  69. Ohlsson Teague EM, Van der Hoek KH, Van der Hoek MB, Perry N, Wagaarachchi P, Robertson SA, Print CG, Hull LM (2009) MicroRNA-regulated pathways associated with endometriosis. Mol Endocrinol 23:265–275

    PubMed  PubMed Central  Google Scholar 

  70. Burney RO, Hamilton AE, Aghajanova L, Vo KC, Nezhat CN, Lessey BA, Giudice LC (2009) MicroRNA expression profiling of eutopic secretory endometrium in women with versus without endometriosis. Mol Hum Reprod 15:625–631

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Lin SC, Wang CC, Wu MH, Yang SH, Li YH, Tsai SJ (2012) Hypoxia-induced microRNA-20a expression increases ERK phosphorylation and angiogenic gene expression inendometriotic stromal cells. J Clin Endocrinol Metab 97:E1515–1523

    CAS  PubMed  Google Scholar 

  72. Petracco R, Grechukhina O, Popkhadze S, Massasa E, Zhou Y, Taylor HS (2011) MicroRNA 135 regulates HOXA10 expression in endometriosis. J Clin Endocrinol Metab 96:E1925–1933

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Shi XY, Gu L, Chen J, Guo XR, Shi YL (2014) Downregulation of miR-183 inhibits apoptosis and enhances the invasive potential of endometrial stromal cells in endometriosis. Int J Mol Med 33:59–67

    CAS  PubMed  Google Scholar 

  74. Sultana S, Kajihara T, Mizuno Y, Sato T, Oguro T, Kimura M, Akita M, Ishihara O (2017) Overexpression of microRNA-542-3p attenuates the differentiating capacity of endometriotic stromal cells. Reprod Med Biol 16:170–178

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Wang WT, Zhao YN, Han BW, Hong SJ, Chen YQ (2013) Circulating microRNAs identified in a genome-wide serum microRNA expression analysis as noninvasive biomarkers for endometriosis. J Clin Endocrinol Metab 98:281–289

    CAS  PubMed  Google Scholar 

  76. Jia SZ, Yang Y, Lang J, Sun P, Leng J (2013) Plasma miR-17-5p, miR-20a and miR-22 are down-regulated in women with endometriosis. Hum Reprod 28:322–330

    CAS  PubMed  Google Scholar 

  77. Cho S, Mutlu L, Grechukhina O, Taylor HS (2015) Circulating microRNAs as potential biomarkers for endometriosis. Fertil Steril 103:1252–1260

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Cosar E, Mamillapalli R, Ersoy GS, Cho S, Seifer B, Taylor HS (2016) Serum microRNAs as diagnostic markers of endometriosis: a comprehensive array-based analysis. Fertil Steril 106:402–409

    CAS  PubMed  Google Scholar 

  79. Siegel RL, Miller KD, Jemal A (2016) Cancer statistics, 2016. CA Cancer J Clin 66:7–30

    PubMed  Google Scholar 

  80. Banno K, Yanokura M, Iida M, Masuda K, Aoki D (2014) Carcinogenic mechanisms of endometrial cancer: involvement of genetics and epigenetics. J Obstet Gynaecol Res 40:1957–1967

    CAS  PubMed  Google Scholar 

  81. Boren T, Xiong Y, Hakam A, Wenham R, Apte S, Wei Z, Kamath S, Chen DT, Dressman H, Lancaster JM (2008) MicroRNAs and their target messenger RNAs associated with endometrial carcinogenesis. Gynecol Oncol 110:206–215

    CAS  PubMed  Google Scholar 

  82. Kajihara T, Brosens JJ, Ishihara O (2013) The role of FOXO1 in the decidual transformation of the endometrium and early pregnancy. Med Mol Morphol 46:61–68

    CAS  PubMed  Google Scholar 

  83. Myatt SS, Wang J, Monteiro LJ, Christian M, Ho KK, Fusi L, Dina RE, Brosens JJ, Ghaem-Maghami S, Lam EW (2010) Definition of microRNAs that repress expression of the tumor suppressor gene FOXO1 in endometrial cancer. Cancer Res 70:367–377

    CAS  PubMed  Google Scholar 

  84. Mozos A, Catasús L, D’Angelo E, Serrano E, Espinosa I, Ferrer I, Pons C, Prat J (2014) The FOXO1-miR27 tandem regulates myometrial invasion in endometrioid endometrial adenocarcinoma. Hum Pathol 45:942–951

    CAS  PubMed  Google Scholar 

  85. Thiery JP (2002) Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer 2:442–454

    CAS  PubMed  Google Scholar 

  86. Lu Z, Nian Z, Jingjing Z, Tao L, Quan L (2017) MicroRNA-424/E2F6 feedback loop modulates cell invasion, migration and EMT in endometrial carcinoma. Oncotarget 8:114281–114291

    PubMed  PubMed Central  Google Scholar 

  87. Li Y, Sun D, Gao J, Shi Z, Chi P, Meng Y, Zou C, Wang Y (2018) MicroRNA-373 promotes the development of endometrial cancer by targeting LATS2 and activating the Wnt/β-Catenin pathway. J Cell Biochem. https://doi.org/10.1002/jcb.28149

    Article  PubMed  PubMed Central  Google Scholar 

  88. Konno Y, Dong P, Xiong Y, Suzuki F, Lu J, Cai M, Watari H, Mitamura T, Hosaka M, Hanley SJ, Kudo M, Sakuragi N (2014) MicroRNA-101 targets EZH2, MCL-1 and FOS to suppress proliferation, invasion and stem cell-like phenotype of aggressive endometrial cancer cells. Oncotarget 5:6049–6062

    PubMed  PubMed Central  Google Scholar 

  89. Dong P, Kaneuchi M, Watari H, Hamada J, Sudo S, Ju J, Sakuragi N (2011) MicroRNA-194 inhibits epithelial to mesenchymal transition of endometrial cancer cells by targeting oncogene BMI-1. Mol Cancer 10:99

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Torres A, Torres K, Pesci A, Ceccaroni M, Paszkowski T, Cassandrini P, Zamboni G, Maciejewski R (2013) Diagnostic and prognostic significance of miRNA signatures in tissues and plasma of endometrioid endometrial carcinoma patients. Int J Cancer 132:1633–1645

    CAS  PubMed  Google Scholar 

  91. Jia W, Wu Y, Zhang Q, Gao G, Zhang C, Xiang Y (2013) Identification of four serum microRNAs from a genome-wide serum microRNA expression profile as potential non-invasive biomarkers for endometrioid endometrial cancer. Oncol Lett 6(1):261–267

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by JSPS KAKENHI Grant Number 19K18679(to S.T.), 17K11250 (to T.K.), 16K 202024 (to H.T.). The authors would like to thank Enago (http://www.enagojp) for the English language review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takeshi Kajihara.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tamaru, S., Kajihara, T., Mizuno, Y. et al. Endometrial microRNAs and their aberrant expression patterns. Med Mol Morphol 53, 131–140 (2020). https://doi.org/10.1007/s00795-020-00252-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00795-020-00252-8

Keywords

Navigation