Skip to main content
Log in

The Pattern of Tyrosine Phosphorylation in Human Sperm in Response to Binding to Zona Pellucida or Hyaluronic Acid

  • Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

In mammalian species, acquisition of sperm fertilization competence is dependent on the phenomenon of sperm capacitation. One of the key elements of capacitation is protein tyrosine phosphorylation (TP) in various sperm membrane regions. In previous studies performed, the pattern of TP was examined in human sperm bound to zona pellucida of oocytes. In the present comparative study, TP patterns upon sperm binding to the zona pellucida or hyaluronic acid (HA) were investigated in spermatozoa arising from the same semen samples. Tyrosine phosphorylation, visualized by immunofluorescence, was localized within the acrosomal cap, equatorial head region, neck, and the principal piece. Tyrosine phosphorylation has increased in a time-related manner as capacitation progressed, and the phosphorylation pattern was identical within the principal piece and neck, regardless of the sperm bound to the zona pellucida or HA. Thus, the data demonstrated that the patterns of sperm activation-related TP were similar regardless of the spermatozoa bound to zona pellucida or HA. Further, sperm with incomplete development, as detected by excess cytoplasmic retention, failed to exhibit TP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yanagimachi R. Fertility of mammalian spermatozoa: its development and relativity. Zygote. 1994;2(4):371–372.

    Article  CAS  PubMed  Google Scholar 

  2. Travis AJ, Kopf GS. The role of cholesterol efflux in regulating the fertilization potential of mammalian spermatozoa. J Clin Invest. 2002;110(6):731–736.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Demarco IA, Espinosa F, Edwards J, et al. Involvement of a Na+/ HCO-3 cotransporter in mouse sperm capacitation. J Biol Chem. 2003;278(9):7001–7009.

    Article  CAS  PubMed  Google Scholar 

  4. Harayama H, Muroga M, Miyake M. A cyclic adenosine 3’,5’-monophosphate-induced tyrosine phosphorylation of Syk protein tyrosine kinase in the flagella of boar spermatozoa. Mol Reprod Dev. 2004;69(4):436–447.

    Article  CAS  PubMed  Google Scholar 

  5. Harayama H, Nakamura K. Changes of PKA and PDK1 in the principal piece of boar spermatozoa treated with a cellpermeable cAMP analog to induce flagellar hyperactivation. Mol Reprod Dev. 2008;75(9):1396–1407.

    Article  CAS  PubMed  Google Scholar 

  6. Barbonetti A, Vassallo MR, Cinque B, et al. Dynamics of the global tyrosine phosphorylation during capacitation and acquisition of the ability to fuse with oocytes in human spermatozoa. Biol Reprod. 2008;79(4):649–656.

    Article  CAS  PubMed  Google Scholar 

  7. Wertheimer EV, Salicioni AM, Liu W, et al. Chloride is essential for capacitation and for the capacitation-associated increase in tyrosine phosphorylation. J Biol Chem. 2008;283(51):35539–35550.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sagare-Patil V, Modi D. Progesterone activates Janus Kinase 1/2 and activators of transcription 1 (JAK1-2/STAT1) pathway in human spermatozoa. Andrologia. 2013;45(3):178–186.

    Article  CAS  PubMed  Google Scholar 

  9. Orta G, Ferreira G, Jose O, Trevino CL, Beltran C, Darszon A. Human spermatozoa possess a calcium-dependent chloride channel that may participate in the acrosomal reaction. J Physiol. 2012;590(pt 11):2659–2675.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Signorelli J, Diaz ES, Morales P. Kinases, phosphatases and proteases during sperm capacitation. Cell Tissue Res. 2012;349(3): 765–782.

    Article  CAS  PubMed  Google Scholar 

  11. Ma F, Wu D, Deng L, et al. Sialidases on mammalian sperm mediate deciduous sialylation during capacitation. J Biol Chem. 2012; 287(45):38073–38079.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. De Jonge CJ, Barratt CL. Methods for the assessment of sperm capacitation and acrosome reaction excluding the sperm penetration assay. Methods Mol Biol. 2013;927:113–118.

    Article  PubMed  CAS  Google Scholar 

  13. Arcelay E, Salicioni AM, Wertheimer E, Visconti PE. Identification of proteins undergoing tyrosine phosphorylation during mouse sperm capacitation. Int J Dev Biol. 2008;52(5–6):463–472.

    Article  CAS  PubMed  Google Scholar 

  14. Visconti PE, Moore GD, Bailey JL, et al. Capacitation of mouse spermatozoa. II. Protein tyrosine phosphorylation and capacitation are regulated by a cAMP-dependent pathway. Development. 1995;121(4):1139–1150.

    CAS  PubMed  Google Scholar 

  15. Lewis B, Aitken RJ. Impact of epididymal maturation on the tyrosine phosphorylation patterns exhibited by rat spermatozoa. Biol Reprod. 2001;64(5):1545–1556.

    Article  CAS  PubMed  Google Scholar 

  16. Si Y, Okuno M. Role of tyrosine phosphorylation of flagellar proteins in hamster sperm hyperactivation. Biol Reprod. 1999;61(1):240–246.

    Article  CAS  PubMed  Google Scholar 

  17. Kulanand J, Shivaji S. Capacitation–associated changes in protein tyrosine phosphorylation, hyperactivation and acrosome reaction in hamster spermatozoa. Andrologia. 2001;33(2):95–104.

    Article  CAS  PubMed  Google Scholar 

  18. Bailey JL. Factors regulating sperm capacitation. Syst Biol Reprod Med. 2010;56(5):334–348.

    Article  CAS  PubMed  Google Scholar 

  19. Urner F, Leppens-Luisier G, Sakkas D. Protein tyrosine phosphorylation in sperm during gamete interaction in the mouse: the influence of glucose. Biol Reprod. 2001;64(5):1350–1357.

    Article  CAS  PubMed  Google Scholar 

  20. Sakkas D, Leppens-Luisier G, Lucas H, et al. Localization of tyrosine phosphorylated proteins in human sperm and relation to capacitation and zona pellucida binding. Biol Reprod. 2003; 68(4):1463–1469.

    Article  CAS  PubMed  Google Scholar 

  21. Nassar A, Mahony M, Morshedi M, Lin MH, Srisombut C, Oehninger S. Modulation of sperm tail protein tyrosine phosphorylation by pentoxifylline and its correlation with hyperactivated motility. Fertil Steril. 1999;71(5):919–923.

    Article  CAS  PubMed  Google Scholar 

  22. Stauss CR, Votta TJ, Suarez SS. Sperm motility hyperactivation facilitates penetration of the hamster zona pellucida. Biol Reprod. 1995;53(6):1280–1285.

    Article  CAS  PubMed  Google Scholar 

  23. Liu DY, Clarke GN, Baker HW. Tyrosine phosphorylation on capacitated human sperm tail detected by immunofluorescence correlates strongly with sperm-zona pellucida (ZP) binding but not with the ZP-induced acrosome reaction. Hum Reprod. 2006; 21(4):1002–1008.

    Article  CAS  PubMed  Google Scholar 

  24. Buffone MG, Verstraeten SV, Calamera JC, Doncel GF. High cholesterol content and decreased membrane fluidity in human spermatozoa are associated with protein tyrosine phosphorylation and functional deficiencies. J Androl. 2009;30(5):552–558.

    Article  CAS  PubMed  Google Scholar 

  25. Huszar G, Vigue L, Corrales M. Sperm creatine kinase activity in fertile and infertile oligospermic men. J Androl. 1990;11(1):40–46.

    CAS  PubMed  Google Scholar 

  26. Huszar G, Vigue L. Incomplete development of human spermatozoa is associated with increased creatine phosphokinase concentration and abnormal head morphology. Mol Reprod Dev. 1993; 34(3):292–298.

    Article  CAS  PubMed  Google Scholar 

  27. Cayli S, Jakab A, Ovari L, et al. Biochemical markers of sperm function: male fertility and sperm selection for ICSI. Reprod Biomed Online. 2003;7(4):462–468.

    Article  CAS  PubMed  Google Scholar 

  28. Huszar G, Sbracia M, Vigue L, Miller DJ, Shur BD. Sperm plasma membrane remodeling during spermiogenetic maturation in men: relationship among plasma membrane beta 1,4-galactosyltransferase, cytoplasmic creatine phosphokinase, and creatine phosphokinase isoform ratios. Biol Reprod. 1997; 56(4):1020–1024.

    Article  CAS  PubMed  Google Scholar 

  29. Huszar G, Ozenci CC, Cayli S, Zavaczki Z, Hansch E, Vigue L. Hyaluronic acid binding by human sperm indicates cellular maturity, viability, and unreacted acrosomal status. Fertil Steril. 2003; 79(suppl 3):1616–1624.

    Article  PubMed  Google Scholar 

  30. Jakab A, Sakkas D, Delpiano E, et al. Intracytoplasmic sperm injection: a novel selection method for sperm with normal frequency of chromosomal aneuploidies. Fertil Steril. 2005;84(6):1665–1673.

    Article  PubMed  Google Scholar 

  31. Huszar G, Jakab A, Sakkas D, et al. Fertility testing and ICSI sperm selection by hyaluronic acid binding: clinical and genetic aspects. Reprod Biomed online. 2007;14(5):650–663.

    Article  PubMed  Google Scholar 

  32. Yagci A, Murk W, Stronk J, Huszar G. Spermatozoa bound to solid state hyaluronic acid show chromatin structure with high DNA chain integrity: an acridine orange fluorescence study. J Androl. 2010;31(6):566–572.

    Article  CAS  PubMed  Google Scholar 

  33. Worrilow K, Eld S, Woodhouse J. Prospective, multi–center, double-blind, randomized clinical trial evaluating the use of hyaluronan-bound sperm in ICSI: statistically significant improvement in clinical outcomes. ASRM annual meeting. Orlando, Florida 2011.

    Google Scholar 

  34. Worrilow KC, Eid S, Woodhouse D, et al. Use of hyaluronan in the selection of sperm for intracytoplasmic sperm injection (ICSI): significant improvement in clinical outcomes—multicen-ter, double-blinded and randomized controlled trial. Hum Reprod. 2013;28(2):306–314.

    Article  CAS  PubMed  Google Scholar 

  35. Franken DR, Acosta AA, Kruger TF, Lombard CJ, Oehninger S, Hodgen GD. The hemizona assay: its role in identifying male factor infertility in assisted reproduction. Fertil Steril. 1993;59(5): 1075–1080.

    Article  CAS  PubMed  Google Scholar 

  36. Burkman LJ, Coddington CC, Franken DR, Krugen TF, Rosenwaks Z, Hogen GD. The hemizona assay (HZA): development of a diagnostic test for the binding of human spermatozoa to the human hemizona pellucida to predict fertilization potential. Fertil Steril. 1988;49(4):688–697.

    Article  CAS  PubMed  Google Scholar 

  37. Sati L, Ovari L, Bennett D, Simon SD, Demir R, Huszar G. Double probing of human spermatozoa for persistent histones, surplus cytoplasm, apoptosis and DNA fragmentation. Reprod Biomed online. 2008;16(4):570–579.

    Article  PubMed  Google Scholar 

  38. Huszar G, Patrizio P, Vigue L, et al. Cytoplasmic extrusion and the switch from creatine kinase B to M isoform are completed by the commencement of epididymal transport in human and stallion spermatozoa. J Androl. 1998;19(1):11–20.

    CAS  PubMed  Google Scholar 

  39. Carrera A, Moos J, Ning XP, et al. Regulation of protein tyrosine phosphorylation in human sperm by a calcium/calmodulin-dependent mechanism: identification of A kinase anchor proteins as major substrates for tyrosine phosphorylation. Dev Biol. 1996; 180(1):284–296.

    Article  CAS  PubMed  Google Scholar 

  40. Leclerc P, de Lamirande E, Gagnon C. Regulation of protein-tyrosine phosphorylation and human sperm capacitation by reactive oxygen derivatives. Free Radic Biol Med. 1997;22(4): 643–656.

    Article  CAS  PubMed  Google Scholar 

  41. Tang JB, Chen YH. Identification of a tyrosine-phosphorylated CCCTC-binding nuclear factor in capacitated mouse spermatozoa. Proteomics. 2006;6(17):4800–4807.

    Article  CAS  PubMed  Google Scholar 

  42. Mitchell LA, Nixon B, Baker MA, Aitken RJ. Investigation of the role of SRC in capacitation–associated tyrosine phosphorylation of human spermatozoa. Mol Hum Reprod. 2008;14(4): 235–243.

    Article  CAS  PubMed  Google Scholar 

  43. Bechoua S, Rieu I, Sion B, Grizard G. Prostasomes as potential modulators of tyrosine phosphorylation in human spermatozoa. Syst Biol Reprod Med. 2011;57(3):139–148.

    Article  CAS  PubMed  Google Scholar 

  44. Huszar G, Vigue L, Oehninger S. Creatine kinase immunocyto-chemistry of human sperm-hemizona complexes: selective binding of sperm with mature creatine kinase-staining pattern. Fertil Steril. 1994;61(1):136–142.

    Article  CAS  PubMed  Google Scholar 

  45. Burks DJ, Carballada R, Moore HD, Saling PM. Interaction of a tyrosine kinase from human sperm with the zona pellucida at fertilization. Science. 1995;269(5220):83–86.

    Article  CAS  PubMed  Google Scholar 

  46. Leyton L, LeGuen P, Bunch D, Saling PM. Regulation of mouse gamete interaction by a sperm tyrosine kinase. Proc Natl Acad Sci U S A. 1992;89(24):11692–11695.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Pukazhenthi BS, Wildt DE, Ottinger MA, Howard J. Inhibition of domestic cat spermatozoa acrosome reaction and zona pellucida penetration by tyrosine kinase inhibitors. Mol Reprod Dev. 1998; 49(1):48–57.

    Article  CAS  PubMed  Google Scholar 

  48. Ickowicz D, Finkelstein M, Breitbart H. Mechanism of sperm capacitation and the acrosome reaction: role of protein kinases. Asian J Androl. 2012;14(6):816–821.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Barbonetti A, Vassallo MR, Cordeschi G, et al. Protein tyrosine phosphorylation of the human sperm head during capacitation: immunolocalization and relationship with acquisition of sperm-fertilizing ability. Asian J Androl. 2010;12(6): 853–861.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ijiri TW, Mahbub Hasan AK, Sato K. Protein-tyrosine kinase signaling in the biological functions associated with sperm. J Signal Transduct. 2012;2012:181560.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabor Huszar MD.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sati, L., Cayli, S., Delpiano, E. et al. The Pattern of Tyrosine Phosphorylation in Human Sperm in Response to Binding to Zona Pellucida or Hyaluronic Acid. Reprod. Sci. 21, 573–581 (2014). https://doi.org/10.1177/1933719113504467

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719113504467

Keywords

Navigation