Skip to main content
Log in

GnRH Decreases Adiponectin Expression in Pituitary Gonadotropes via the Calcium and PKA Pathways

  • Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

As endocrinologically active cells, adipocytes are capable of secreting various adipocytokines such as leptin, resistin, and adiponectin to impact metabolic function. Although adipocytes remain to be the primary site of synthesis and secretion, there is now growing evidence that supports the presence of adiponectin and its receptors within the hypothalamic–pituitary–gonadal axis, providing a possible link between obesity and abnormal reproductive physiology. It has been demonstrated that adiponectin may reduce gonadotropin-releasing hormone (GnRH) secretion from the hypothalamus as well as modulate gonadal steroid hormone production. Furthermore, prior data indicate that adiponectin may play a role in decreasing luteinizing hormone secretion from pituitary gonadotropes. We aimed to identify the hormonal regulators of adiponectin and its receptors, AdipoR1 and AdipoR2, in pituitary gonadotropes using immortalized gonadotropic LβT2 cells and primary rat pituitary cells. Our study shows significant alterations in adiponectin expression across the estrous cycle. In addition, we present a novel finding that GnRH suppresses pituitary adiponectin expression via the calcium and protein kinase A intracellular pathways in both cultured rat primary pituitary cells and the LβT2 gonadotrope cell line. The GnRH did not alter expression of the adiponectin receptors, AdipoR1 and AdipoR2, in cultured gonadotropes. Expression of the adiponectin receptors, AdipoR1 and AdipoR2, was not altered by GnRH in cell culture but in vivo or in vitro. Our data suggest that gonadotrope function may be modulated by GnRH-mediated changes in adiponectin expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kadowaki T, Yamauchi T. Adiponectin and adiponectin receptors. Endocr Rev. 2005;26(3):439–451.

    Article  CAS  Google Scholar 

  2. Michalakis KG, Segars JH. The role of adiponectin in reproduction: from polycystic ovary syndrome to assisted reproduction. Fertil Steril. 2010;94(6):1949–1957.

    Article  CAS  Google Scholar 

  3. Hu E, Liang P, Spiegelman BM. AdipoQ is a novel adipose-specific gene dysregulated in obesity. J Biol Chem. 1996;271(18):10697–10703.

    Article  CAS  Google Scholar 

  4. Maeda K, Okubo K, Shimomura I, Funahashi T, Matsuzawa Y, Matsubara K. cDNA cloning and expression of a novel adipose specific collagen-like factor, apM1 (AdiPose Most abundant Gene transcript 1). Biochem Biophys Res Commun. 1996; 221(2):286–289.

    Article  CAS  Google Scholar 

  5. Nakano Y, Tobe T, Choi-Miura NH, Mazda T, Tomita M. Isolation and characterization of GBP28, a novel gelatin-binding protein purified from human plasma. J Biochem. 1996; 120(4):803–812.

    Article  CAS  Google Scholar 

  6. Scherer PE, Williams S, Fogliano M, Baldini G, Lodish HF. A novel serum protein similar to C1q, produced exclusively in adipocytes. J Biol Chem. 1995;270(45):26746–26749.

    Article  CAS  Google Scholar 

  7. Liu M, Liu F. Transcriptional and post-translational regulation of adiponectin. Biochem J. 2010;425(1):41–52.

    Article  CAS  Google Scholar 

  8. Suzuki S, Wilson-Kubalek EM, Wert D, Tsao TS, Lee DH. The oligomeric structure of high molecular weight adiponectin. FEBS Lett. 2007;581(5):809–814.

    Article  CAS  Google Scholar 

  9. Lu M, Tang Q, Olefsky JM, Mellon PL, Webster NJ. Adiponectin activates adenosine monophosphate-activated protein kinase and decreases luteinizing hormone secretion in LbetaT2 gonadotropes. Mol Endocrinol. 2008;22(3):760–771.

    Article  CAS  Google Scholar 

  10. Rodriguez-Pacheco F, Martinez-Fuentes AJ, Tovar S, et al. Regulation of pituitary cell function by adiponectin. Endocrinology. 2007;148(1):401–410.

    Article  CAS  Google Scholar 

  11. Psilopanagioti A, Papadaki H, Kranioti EF, Alexandrides TK, Varakis JN. Expression of adiponectin and adiponectin receptors in human pituitary gland and brain. Neuroendocrinology. 2009; 89(1):38–47.

    Article  CAS  Google Scholar 

  12. Wilkinson M, Brown R, Imran SA, Ur E. Adipokine gene expression in brain and pituitary gland. Neuroendocrinology. 2007;86(3):191–209.

    Article  CAS  Google Scholar 

  13. Cheng XB, Wen JP, Yang J, Yang Y, Ning G, Li XY. GnRH secretion is inhibited by adiponectin through activation of AMP-activated protein kinase and extracellular signal-regulated kinase. Endocrine. 2011;39(1):6–12.

    Article  CAS  Google Scholar 

  14. Caminos JE, Nogueiras R, Gaytan F, et al. Novel expression and direct effects of adiponectin in the rat testis. Endocrinology. 2008; 149(7):3390–3402.

    Article  CAS  Google Scholar 

  15. Chabrolle C, Tosca L, Rame C, Lecomte P, Royere D, Dupont J. Adiponectin increases insulin-like growth factor I-induced progesterone and estradiol secretion in human granulosa cells. Fertil Steril. 2009;92(6):1988–1996.

    Article  CAS  Google Scholar 

  16. Wilfinger WW, Larsen WJ, Downs TR, Wilbur DL. An in vitro model for studies of intercellular communication in cultured rat anterior pituitary cells. Tissue Cell. 1984;16(4):483–497.

    Article  CAS  Google Scholar 

  17. Turgeon JL, Kimura Y, Waring DW, Mellon PL. Steroid and pulsatile gonadotropin-releasing hormone (GnRH) regulation of luteinizing hormone and GnRH receptor in a novel gonadotrope cell line. Mol Endocrinol. 1996;10(4):439–450.

    CAS  PubMed  Google Scholar 

  18. Iqbal J, Latchoumanin O, Sari IP, et al. Estradiol-17beta inhibits gonadotropin-releasing hormone-induced Ca2+ in gonadotropes to regulate negative feedback on luteinizing hormone release. Endocrinology. 2009;150(9):4213–4220.

    Article  CAS  Google Scholar 

  19. Grafer CM, Thomas R, Lambrakos L, Montoya I, White S, Halvorson LM. GnRH stimulates expression of PACAP in the pituitary gonadotropes via both the PKA and PKC signaling systems. Mol Endocrinol. 2009;23(7):1022–1032.

    Article  CAS  Google Scholar 

  20. Haisenleder DJ, Ferris HA, Shupnik MA. The calcium component of gonadotropin-releasing hormone-stimulated luteinizing hormone subunit gene transcription is mediated by calcium/ calmodulin-dependent protein kinase type II. Endocrinology. 2003;144(6):2409–2416.

    Article  CAS  Google Scholar 

  21. Liu F, Austin DA, Webster NJ. Gonadotropin-releasing hormone-desensitized LbetaT2 gonadotrope cells are refractory to acute protein kinase C, cyclic AMP, and calcium-dependent signaling. Endocrinology. 2003;144(10):4354–4365.

    Article  CAS  Google Scholar 

  22. Yamada Y, Yamamoto H, Yonehara T, et al. Differential activation of the luteinizing hormone beta-subunit promoter by activin and gonadotropin-releasing hormone: a role for the mitogen-activated protein kinase signaling pathway in LbetaT2 gonadotrophs. Biol Reprod. 2004;70(1):236–243.

    Article  CAS  Google Scholar 

  23. Ando H, Hew CL, Urano A. Signal transduction pathways and transcription factors involved in the gonadotropin-releasing hormone-stimulated gonadotropin subunit gene expression. Comp Biochem Physiol B Biochem Mol Biol. 2001;129(2–3):525–532.

    Article  CAS  Google Scholar 

  24. Cavarra MS, Assef YA, Kotsias BA. Effects of ionomycin and thapsigargin on ion currents in oocytes of Bufo arenarum. J Exp Zool A Comp Exp Biol. 2003;297(2):130–137.

    Article  Google Scholar 

  25. Davies SP, Reddy H, Caivano M, Cohen P. Specificity and mechanism of action of some commonly used protein kinase inhibitors. Biochem J. 2000;351(Pt 1):95–105.

    Article  CAS  Google Scholar 

  26. Toullec D, Pianetti P, Coste H, et al. The bisindolylmaleimide GF 109203X is a potent and selective inhibitor of protein kinase C. J Biol Chem. 1991;266(24):15771–15781.

    CAS  PubMed  Google Scholar 

  27. Escobar-Morreale HF, Villuendas G, Botella-Carretero JI, et al. Adiponectin and resistin in PCOS: a clinical, biochemical and molecular genetic study. Hum Reprod. 2006;21(9):2257–2265.

    Article  CAS  Google Scholar 

  28. Ferris HA, Walsh HE, Stevens J, Fallest PC, Shupnik MA. Luteinizing hormone beta promoter stimulation by adenylyl cyclase and cooperation with gonadotropin-releasing hormone 1 in transgenic mice and LBetaT2 Cells. Biol Reprod. 2007;77(6):1073–1080.

    Article  CAS  Google Scholar 

  29. Naor Z. Signaling by G-protein-coupled receptor (GPCR): studies on the GnRH receptor. Front Neuroendocrinal. 2009; 30(1):10–29.

    Article  CAS  Google Scholar 

  30. McArdle CA, Counis R. GnRH and PACAP action in gonadotropes: cross-talk between phosphoinositidase C and adenylyl cyclase mediated signaling pathways. Trends Endocrinol Metab. 1996;7(5):168–175.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan Kim MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, J., Zheng, W., Grafer, C. et al. GnRH Decreases Adiponectin Expression in Pituitary Gonadotropes via the Calcium and PKA Pathways. Reprod. Sci. 20, 937–945 (2013). https://doi.org/10.1177/1933719112468947

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719112468947

Keywords

Navigation