Skip to main content

Advertisement

Log in

Association Between Body Weight at Weaning and Remodeling in the Subcutaneous Adipose Tissue of Obese Adult Mice With Undernourishment In Utero

  • Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Rapid growth in infancy considerably increases the risk of obesity and metabolic disorders in adulthood especially among neonates born small. To investigate the mechanism involved, we developed an animal model of undernourishment in utero by maternal caloric restriction, in which the Z scores of body weight at weaning (19.5 days) positively correlated with parameters of obesity, metabolic disorders, and remodeling of subcutaneous adipose tissue, such as numbers of macrophages in adipose tissue, the ratio of inflammatory M1 to anti-inflammatory M2 macrophages, estimated by gene expression of specific antigens, and the relative ratio of small adipocytes less than 30 mm in diameter, on a high-fat diet at 17 weeks of age. To our knowledge, this is the first report of a possible connection between infantile body weight and adipose tissue remodeling in obesity after undernourishment in utero.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Flier JS. Obesity wars: molecular progress confronts an expanding epidemic. Cell. 2004;116(2):337–350.

    Article  CAS  PubMed  Google Scholar 

  2. Masuzaki H, Paterson J, Shinyama H, et al. A transgenic model of visceral obesity and the metabolic syndrome. Science. 2001; 294(5549):2166–2170.

    Article  CAS  PubMed  Google Scholar 

  3. Wajchenberg BL. Subcutaneous and visceral adipose tissue: their relation to the metabolic syndrome. Endocr Rev. 2000;21(6): 697–738.

    Article  CAS  PubMed  Google Scholar 

  4. Ravelli GP, Stein ZA, Susser MW. Obesity in young men after famine exposure in utero and early infancy. N Engl J Med. 1976;295(7):349–353.

    Article  CAS  PubMed  Google Scholar 

  5. Oken E, Gillman MW. Fetal origins of obesity. Obes Res. 2003; 11(4):496–506.

    Article  PubMed  Google Scholar 

  6. Yajnik CS. Obesity epidemic in india: intrauterine origins? Proc Nutr Soc. 2004;63(3):387–396.

    Article  CAS  Google Scholar 

  7. Eriksson J, Forsen T, Tuomilehto J, Osmond C, Barker D. Size at birth, childhood growth and obesity in adult life. Int J Obes Relat Metab Disord. 2001;25(5):735–740.

    Article  CAS  PubMed  Google Scholar 

  8. Ong KK, Loos RJ. Rapid infancy weight gain and subsequent obesity: systematic reviews and hopeful suggestions. Acta Paediatr. 2006;95(8):904–908.

    Article  PubMed  Google Scholar 

  9. Botton J, Heude B, Maccario J, Ducimetiere P, Charles MA. Postnatal weight and height growth velocities at different ages between birth and 5 y and body composition in adolescent boys and girls. Am J Clin Nutr. 2008;87(6):1760–1768.

    Article  CAS  PubMed  Google Scholar 

  10. Stettler N, Stallings VA, Troxel AB, et al. Weight gain in the first week of life and overweight in adulthood: a cohort study of European American subjects fed infant formula. Circulation. 2005;111(15):1897–1903.

    Article  PubMed  Google Scholar 

  11. Yura S, Itoh H, Sagawa N, et al. Role of premature leptin surge in obesity resulting from intrauterine undernutrition. Cell Metab. 2005;1(6):371–378.

    Article  CAS  PubMed  Google Scholar 

  12. Yura S, Itoh H, Sagawa N, et al. Neonatal exposure to leptin augments diet-induced obesity in leptin-deficient ob/ob mice. Obesity (Silver Spring). 2008;16(6):1289–1295.

    Article  CAS  Google Scholar 

  13. Vickers MH, Breier BH, Cutfield WS, Hofman PL, Gluckman PD. Fetal origins of hyperphagia, obesity, and hypertension and postnatal amplification by hypercaloric nutrition. Am J Physiol Endocrinol Metab. 2000;279(1):E83–E87.

    Article  CAS  PubMed  Google Scholar 

  14. Desai M, Babu J, Ross MG. Programmed metabolic syndrome: Prenatal undernutrition and postweaning overnutrition. Am J Physiol Regul Integr Comp Physiol. 2007;293(6):R2306–R2314.

    Article  CAS  PubMed  Google Scholar 

  15. Budge H, Edwards LJ, McMillen IC, et al. Nutritional manipulation of fetal adipose tissue deposition and uncoupling protein 1 messenger RNA abundance in the sheep: differential effects of timing and duration. Biol Reprod. 2004;71(1):359–365.

    Article  CAS  PubMed  Google Scholar 

  16. Symonds ME, Pearce S, Bispham J, Gardner DS, Stephenson T. Timing of nutrient restriction and programming of fetal adipose tissue development. Proc Nutr Soc. 2004;63(3):397–403.

    Article  PubMed  Google Scholar 

  17. Ozanne SE, Lewis R, Jennings BJ, Hales CN. Early programming of weight gain in mice prevents the induction of obesity by a highly palatable diet. Clin Sci (Lond). 2004;106(2): 141–145.

    Article  CAS  Google Scholar 

  18. Guan H, Arany E, van Beek JP, et al. Adipose tissue gene expression profiling reveals distinct molecular pathways that define visceral adiposity in offspring of maternal protein-restricted rats. Am J Physiol Endocrinol Metab. 2005;288(4): E663–E673.

    Article  CAS  PubMed  Google Scholar 

  19. Bieswal F, Ahn MT, Reusens B, et al. The importance of catch-up growth after early malnutrition for the programming of obesity in male rat. Obesity (Silver Spring). 2006;14(8):1330–1343.

    Article  CAS  Google Scholar 

  20. Zambrano E, Bautista CJ, Deas M, et al. A low maternal protein diet during pregnancy and lactation has sex- and window of exposure-specific effects on offspring growth and food intake, glucose metabolism and serum leptin in the rat. J Physiol. 2006; 571(pt 1):221–230.

    Article  CAS  PubMed  Google Scholar 

  21. Simmons RA, Templeton LJ, Gertz SJ. Intrauterine growth retardation leads to the development of type 2 diabetes in the rat. Diabetes. 2001;50(10):2279–2286.

    Article  CAS  PubMed  Google Scholar 

  22. Coe BL, Kirkpatrick JR, Taylor JA, vom Saal FS. A new ‘crowded uterine horn’ mouse model for examining the relationship between foetal growth and adult obesity. Basic Clin Pharmacol Toxicol. 2008;102(2):162–167.

    Article  CAS  PubMed  Google Scholar 

  23. Nilsson C, Larsson BM, Jennische E, et al. Maternal endotoxemia results in obesity and insulin resistance in adult male offspring. Endocrinology. 2001;142(6):2622–2630.

    Article  CAS  PubMed  Google Scholar 

  24. Venu L, Harishankar N, Prasanna Krishna T, Raghunath M. Maternal dietary vitamin restriction increases body fat content but not insulin resistance in wnin rat offspring up to 6 months of age. Diabetologia. 2004;47(9):1493–1501.

    Article  CAS  PubMed  Google Scholar 

  25. Lee M, Wu Y, Fried SK. Adipose tissue remodeling in pathophysiology of obesity. Curr Opin Clin Nutr Metab Care. 2010;13(4): 371–376.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Sun K, Kusminski CM, Scherer PE. Adipose tissue remodeling and obesity. J Clin Invest. 2011;121(6):2094–2101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Suganami T, Mieda T, Itoh M, Shimoda Y, Kamei Y, Ogawa Y. Attenuation of obesity-induced adipose tissue inflammation in c3h/hej mice carrying a toll-like receptor 4 mutation. Biochem Biophys Res Commun. 2007;354(1):45–49.

    Article  CAS  PubMed  Google Scholar 

  28. Itoh M, Suganami T, Hachiya R, Ogawa Y. Adipose tissue remodeling as homeostatic inflammation. Int J Inflam. 2011;2011:720926.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Schenk S, Saberi M, Olefsky JM. Insulin sensitivity: modulation by nutrients and inflammation. J Clin Invest. 2008;118(9):2992–3002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hotamisligil GS. Inflammation and metabolic disorders. Nature. 2006;444(7121):860–867.

    Article  CAS  PubMed  Google Scholar 

  31. Rocha VZ, Libby P. Obesity, inflammation, and atherosclerosis. Nat Rev Cardiol. 2009;6(6):399–409.

    Article  CAS  PubMed  Google Scholar 

  32. Nishimura S, Manabe I, Nagasaki M, et al. Adipogenesis in obesity requires close interplay between differentiating adipocytes, stromal cells, and blood vessels. Diabetes. 2007;56(6):1517–1526.

    Article  CAS  PubMed  Google Scholar 

  33. Marques BG, Hausman DB, Martin RJ. Association of fat cell size and paracrine growth factors in development of hyperplastic obesity. Am J Physiol. 1998;275(6 pt 2):R1898–R1908.

    CAS  PubMed  Google Scholar 

  34. Xu H, Barnes GT, Yang Q, et al. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J Clin Invest. 2003;112(12):1821–1830.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Luo N, Wang X, Chung BH, et al. Effects of macrophage-specific adiponectin expression on lipid metabolism in vivo. Am J Physiol Endocrinol Metab. 2011;301(1):E180–E186.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kawamura M, Itoh H, Yura S, et al. Undernutrition in utero augments systolic blood pressure and cardiac remodeling in adult mouse offspring: possible involvement of local cardiac angiotensin system in developmental origins of cardiovascular disease. Endocrinology. 2007;148(3):1218–1225.

    Article  CAS  PubMed  Google Scholar 

  37. Kawamura M, Itoh H, Yura S, et al. Angiotensin ii receptor blocker candesartan cilexetil, but not hydralazine hydrochloride, protects against mouse cardiac enlargement resulting from undernutrition in utero. Reprod Sci. 2009;16(10):1005–1012.

    Article  CAS  PubMed  Google Scholar 

  38. Kawamura M, Itoh H, Yura S, et al. Isocaloric high-protein diet ameliorates systolic blood pressure increase and cardiac remodeling caused by maternal caloric restriction in adult mouse offspring. Endocr J. 2009;56(5):679–689.

    Article  CAS  PubMed  Google Scholar 

  39. Festing MF. Design and statistical methods in studies using animal models of development. ILAR J. 2006;47(1):5–14.

    Article  CAS  PubMed  Google Scholar 

  40. Zhang L, Sugiyama T, Murabayashi N, et al. The inflammatory changes of adipose tissue in late pregnant mice. J Mol Endocrinol. 2011;47(2):157–165.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Tchoukalova YD, Harteneck DA, Karwoski RA, Tarara J, Jensen MD. A quick, reliable, and automated method for fat cell sizing. J Lipid Res. 2003;44(9):1795–1801.

    Article  CAS  PubMed  Google Scholar 

  42. Furuta N, Yaguchi C, Itoh H, et al. Immunohistochemical detection of meconium in the fetal membrane, placenta and umbilical cord. Placenta. 2012;33(1):24–30.

    Article  CAS  PubMed  Google Scholar 

  43. Kitagawa K, Wada T, Furuichi K, et al. Blockade of ccr2 ameliorates progressive fibrosis in kidney. Am J Pathol. 2004;165(1):237–246.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Larsen RJaM, M. L An Introduction to Mathematical Statistics and its Applications. Upper Saddle River, NJ: Prentice Hall; 2000.

  45. Strissel KJ, Stancheva Z, Miyoshi H, et al. Adipocyte death, adipose tissue remodeling, and obesity complications. Diabetes. 2007;56(12):2910–2918.

    Article  CAS  PubMed  Google Scholar 

  46. Murano I, Barbatelli G, Parisani V, et al. Dead adipocytes, detected as crown-like structures, are prevalent in visceral fat depots of genetically obese mice. J Lipid Res. 2008;49(7): 1562–1568.

    Article  CAS  PubMed  Google Scholar 

  47. Karastergiou K, Mohamed-Ali V. The autocrine and paracrine roles of adipokines. Mol Cell Endocrinol. 2010;318(1–2): 69–78.

    Article  CAS  PubMed  Google Scholar 

  48. Lumeng CN, Bodzin JL, Saltiel AR. Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J Clin Invest. 2007;117(1):175–184.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Hales CN, Barker DJ. The thrifty phenotype hypothesis. Br Med Bull. 2001;60:5–20.

    Article  CAS  PubMed  Google Scholar 

  50. Gluckman PD, Hanson MA. The Fetal Matrix-Evolution, Development and Disease. Cambridge, UK: Cambridge University Press; 2005.

    Google Scholar 

  51. Gluckman PD, Hanson MA. Mismatch Why our World No Longer Fits our Bidies. Oxford, UK: Oxford University Press; 2006.

    Google Scholar 

  52. de Heredia FP, Gomez-Martinez S, Marcos A. Obesity, inflammation and the immune system. Proc Nutr Soc. 2012; 71(2):332–338.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroaki Itoh MD, DMed, Sci.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kohmura, Y.K., Kanayama, N., Muramatsu, K. et al. Association Between Body Weight at Weaning and Remodeling in the Subcutaneous Adipose Tissue of Obese Adult Mice With Undernourishment In Utero. Reprod. Sci. 20, 813–827 (2013). https://doi.org/10.1177/1933719112466300

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719112466300

Keywords

Navigation