Skip to main content
Log in

A Phytooxysterol, 28-Homobrassinolide Modulates Rat Testicular Steroidogenesis in Normal and Diabetic Rats

  • Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Steroidogenesis in testicular cells depends upon the availability of cholesterol within testicular mitochondria besides the activities of 3β-hydroxysteroid dehydrogenase (3β-HSD, 17β-hydroxysteroid dehydrogenase [17b-HSD]), and the tissue levels of steroidogenic acute regulatory protein (StAR), androgen-binding protein (ABP), and testosterone (T). Cellular cholesterol biosynthesis is regulated by endogenous oxycholesterols acting through nuclear hormone receptors. Plant oxysterols, such as 28-homobrassinolide (28-HB), available to human through diet, was shown to exhibit antihyperglycemic effect in diabetic male rat. Its role in rat testicular steroidogenesis and lipid peroxidation (LPO) was therefore assessed using normal and streptozotocin-induced diabetic male rats. Administration of 28-HB (333 µg/kg body weight) by oral gavage for 15 consecutive days to experimental rats diminished LPO, increased antioxidant enzyme, 3β-HSD and 17β-HSD activities, and elevated StAR and ABP expression and T level in rat testis. We report that 28-HB induced steroidogenesis in normal and diabetic rat testis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lund E, Bjoerkhem I. Role of oxysterols in the regulation of cholesterol homeostasis: a critical evaluation. Acc Chem Res. 1995;28(6):241–249.

    Article  CAS  Google Scholar 

  2. Janowski BA, Willy PJ, Devi TR, Falck JR, Mangelsdorf DJ. An oxysterol signaling pathway mediated by the nuclear receptor LXR alpha. Nature. 1996;383(6602):728–731.

    Article  CAS  PubMed  Google Scholar 

  3. Verger Ph, Leblanc JC. Concentration of phytohormones in food and feed and their impact on the human exposure. Pure Appl Chem. 2003;75(11): 1873–1880.

    Article  CAS  Google Scholar 

  4. Stocco DM, Clark BJ. Regulation of the acute production of steroids in steroidogenic cells. Endocr Rev. 1996;17(3):221–244.

    CAS  PubMed  Google Scholar 

  5. Saradha B, Vaithinathan S, Mathur PP. Single exposure to low dose of lindane causes transient decrease in testicular steroidogenesis in adult male Wistar rats. Toxicology. 2008;244(2–3):190–197.

    Article  CAS  PubMed  Google Scholar 

  6. D’Cruz SC, Vaithinathan S, Jubendradass R, Mathur PP. Effects of plants and plant products on the testis. Asian J Androl. 2010;12(4):468–479.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Page ST. Physiologic role and regulation of intratesticular sex steroids. Curr Opin Endocrinol Diabetes Obes. 2011;18(3):217–223.

    Article  CAS  PubMed  Google Scholar 

  8. Muthuraman P, Srikumar K. A brassinosteroid as an antihyperglycemic in alloxan induced diabetic rats. J Curr Sci. 2009; 10(1):19–28.

    Google Scholar 

  9. Cameron DF, Rountree J, Schultz RE, Repetta D, Murray FT. Sustained hyperglycemia results in testicular dysfunction and reduced fertility potential in BBWOR diabetic rats. Am J Physiol. 1990;259(6 pt 1):E881–E889.

    CAS  PubMed  Google Scholar 

  10. Muthuraman P, Ravikumar S, Vikramathithan J, Nirmalkumar G, Srikumar K. Effect of phytohormones on tissue hexokinase and on some blood components in Wistar rats. Int J Drug Delivery. 2010;2:168–172.

    Article  CAS  Google Scholar 

  11. Bergmeyer HU, Grassl M, Walter HE. Methods of Enzymatic Analysis. Vol 2. 3rd ed. Deerfield Beach, FL: Verlag Chemie; 1983.

    Google Scholar 

  12. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951;193(1):265–275.

    CAS  PubMed  Google Scholar 

  13. Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970;227(5259):680–685.

    Article  CAS  PubMed  Google Scholar 

  14. Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem. 1979;95(2):351–358.

    Article  CAS  PubMed  Google Scholar 

  15. Marklund S, Marklund G. Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem. 1974;47(3):469–474.

    Article  CAS  PubMed  Google Scholar 

  16. Claiborne A. Catalase activity. In: Greenwald R, ed. CRC Handbook of Methods for Oxygen Radical Research. FL: CRC Press; 1985.

    Google Scholar 

  17. Beutler E, Duron O, Kelly BM. Improved method for the determination of blood glutathione. J Lab Clin Med. 1963;61:882–888.

    CAS  PubMed  Google Scholar 

  18. Mooradian AD, Morley JE, Korenman SG. Biological actions of androgens. Endocr Rev. 1987;8(1):1–28.

    Article  CAS  PubMed  Google Scholar 

  19. Schroepfer GJ Jr. Oxysterols: modulators of cholesterol metabolism and other processes. Physiol Rev. 2000;80(1):361–554.

    Article  CAS  PubMed  Google Scholar 

  20. Xie W, Evans RM. Orphan nuclear receptors: the exotics of xenobiotics. J Biol Chem. 2001;276(41):37739–37742.

    Article  CAS  PubMed  Google Scholar 

  21. Stocco DM, Wang X, Jo Y, Manna PR. Multiple signaling pathways regulating steroidogenesis and steroidogenic acute regulatory protein expression: more complicated than we thought. Mol Endocrinol. 2005;19(11):2647–2659.

    Article  CAS  PubMed  Google Scholar 

  22. Svechnikov K, Landreh L, Weisser J, et al. Origin, development and regulation of human Leydig cells. Horm Res Paediatr. 2010;73(2):93–101.

    Article  CAS  PubMed  Google Scholar 

  23. Watari H, Arakane F, Moog-Lutz C, et al. MLN64 contains a domain with homology to the steroidogenic acute regulatory protein (StAR) that stimulates steroidogenesis. Proc Natl Acad Sci U S A. 1997;94(16):8462–8467.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Houk CP, Pearson EJ, Martinelle N, Donahoe PK, Teixeira J. Feedback inhibition of steroidogenic acute regulatory protein expression in vitro and in vivo by androgens. Endocrinology. 2004;145(3):1269–1275.

    Article  CAS  PubMed  Google Scholar 

  25. Ruiz de Galarreta CM, Fanjul LF, Meidan R, Hsueh AJ. Regulation of 3 beta-hydroxysteroid dehydrogenase activity by human chorionic gonadotropin, androgens, and anti-androgens in cultured testicular cells. J Biol Chem. 1983;258(18):10988–10996.

    CAS  PubMed  Google Scholar 

  26. Jackson FL, Hudson JC. Altered responses to androgen in diabetic male rats. Diabetes. 1984;33(9):819–824.

    Article  CAS  PubMed  Google Scholar 

  27. Leaming AB, Mathur RS, Levine JH. Increased plasma testosterone in streptozotocin-diabetic female rats. Endocrinology. 1982;111(4):1329–1333.

    Article  CAS  PubMed  Google Scholar 

  28. Ho SM. Prostatic androgen receptor and plasma testosterone levels in streptozotocin-induced diabetic rats. J Steroid Biochem Mol Biol. 1991;38(1):67–72.

    Article  CAS  PubMed  Google Scholar 

  29. D’Aniello A, Di Cosmo A, Di Cristo C, Annunziato L, Petrucelli L, Fisher G. Involvement of D-aspartic acid in the synthesis of testosterone in rat testes. Life Sci. 1996;59(2):97–104.

    Article  PubMed  Google Scholar 

  30. Tindall DJ, Means AR. Concerning the hormonal regulation of androgen binding protein in rat testis. Endocrinology. 1976;99(3):809–818.

    Article  CAS  PubMed  Google Scholar 

  31. Danzo BJ, Pavlou SN, Anthony HL. Hormonal regulation of androgen binding protein in the rat. Endocrinology. 1990;127(6):2829–2838.

    Article  CAS  PubMed  Google Scholar 

  32. Matsunami T, Sato Y, Sato T, Yukawa M. Antioxidant status and lipid peroxidation in diabetic rats under hyperbaric oxygen exposure. Physiol Res. 2010;59(1):97–104.

    CAS  PubMed  Google Scholar 

  33. Aitken RJ, Roman SD. Antioxidant systems and oxidative stress in the testes. Oxid Med Cell Longev. 2008;1(1):15–24.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Muthuraman P, Srikumar K. A comparative study on the effect of homobrassinolide and gibberellic acid on lipid peroxidation and antioxidant status in normal and diabetic rats. J Enzyme Inhib Med Chem. 2009;24(5):1122–1127.

    Article  CAS  PubMed  Google Scholar 

  35. Smith LL. Cholesterol Auto Oxidation. New York, NY: Plenum Press; 1981:1–674.

    Book  Google Scholar 

  36. Muthuraman P, Srikumar K. Induction of hexokinase I expression in normal and diabetic rats by a brassinosteroid isoform. Eur J Pharm Sci. 2010;41(1):1–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Premendu Prakash Mathur PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Premalatha, R., Jubendradass, R., Rani, S.J.A. et al. A Phytooxysterol, 28-Homobrassinolide Modulates Rat Testicular Steroidogenesis in Normal and Diabetic Rats. Reprod. Sci. 20, 589–596 (2013). https://doi.org/10.1177/1933719112459241

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719112459241

Keywords

Navigation