Skip to main content
Log in

WNT/β-Catenin-Signaling Pathway Stimulates the Proliferation of Cultured Adult Human Sertoli Cells via Upregulation of C-myc Expression

  • Original Articles
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

The role of WNT/β-catenin-signaling pathway is critical in mouse Sertoli cell maturation and tumorigenesis. This study aims to examine the effects of WNT/β-catenin signaling on the cultured adult human Sertoli cells and the underlying molecular mechanisms. Glycogen synthase kinase 3β (GSK-3β) inhibitors, SB216763 and lithium chloride (LiCl), were used to activate WNT/β-catenin-signaling pathway. 5-Bromo-2’-deoxyuridine (BrdU) incorporation assay and flow cytometry were used to analyze the proliferation and cell cycle of cultured human Sertoli cells, respectively. C-myc expression was accessed by immunofluorescence, real-time polymerase chain reaction and Western blot. The effects of c-myc on Sertoli cell proliferation were investigated by RNA interference technology and BrdU incorporation assay. The results showed activation of WNT/β-catenin signaling stimulated human Sertoli cell proliferation. Obvious increases in c-myc messenger RNA and protein expression were observed after SB216763 and LiCl treatments. Knockdown of c-myc expression attenuated the ability of WNT/β-catenin signaling to stimulate the proliferation of human Sertoli cells. WNT/β-catenin signaling enhances human Sertoli cell proliferation via upregulation of c-myc expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sharpe RM. Regulation of spermatogenesis. In: Knobil E, Neill JD, eds. The Physiology of Reproduction, 2nd ed. New York, NY: Raven Press; 1994:1363–1434.

    Google Scholar 

  2. Sharpe RM, McKinnell C, Kivlin C, Fisher JS. Proliferation and functional maturation of Sertoli cells, and their relevance to disorders of testis function in adulthood. Reproduction. 2003; 125(6):769–784.

    Article  CAS  Google Scholar 

  3. Ahmed EA, Barten-van Rijbroek AD, Kal HB, et al. Proliferative activity in vitro and DNA repair indicate that adult mouse and human Sertoli cells are not terminally differentiated, quiescent cells. Biol Reprod. 2009;80(6):1084–1091.

    Article  CAS  Google Scholar 

  4. Chui K, Trivedi A, Cheng CY, et al. Characterization and Functionality of Proliferative Human Sertoli Cells. Cell transplantation. 2011;20(5):619–635.

    Article  Google Scholar 

  5. Brehm R, Rey R, Kliesch S, Steger K, Marks A, Bergmann M. Mitotic activity of Sertoli cells in adult human testis: an immuno-histochemical study to characterize Sertoli cells in testicular cords from patients showing testicular dysgenesis syndrome. Anat Embryol. 2006;211(3):223–236.

    Article  Google Scholar 

  6. Aberle H, Bauer A, Stappert J, Kispert A, Kemler R. Beta-catenin is a target for the ubiquitin-proteasome pathway. EMBO J. 1997; 16(13):3797–3804.

    Article  CAS  Google Scholar 

  7. Peifer M, Polakis P. Wnt signaling in oncogenesis and embryogenesis—a look outside the nucleus. Science. 2000;287(5458): 1606–1609.

    Article  CAS  Google Scholar 

  8. Morin PJ. Beta-catenin signaling and cancer. Bioessays. 1999; 21(12):1021–1030.

    Article  CAS  Google Scholar 

  9. Golestaneh N, Beauchamp E, Fallen S, Kokkinaki M, Uren A, Dym M. Wnt signaling promotes proliferation and stemness regulation of spermatogonial stem/progenitor cells. Reproduction. 2009;138(1):151–162.

    Article  CAS  Google Scholar 

  10. Boyer A, Hermo L, Paquet M, Robaire B, Boerboom D. Seminiferous tubule degeneration and infertility in mice with sustained activation of WNT/CTNNB1 signaling in Sertoli cells. Biol Reprod. 2008;79(3):475–485.

    Article  CAS  Google Scholar 

  11. Chang H, Gao F, Guillou F, Taketo MM, Huff V, Behringer RR. Wt1 negatively regulates beta-catenin signaling during testis development. Development. 2008;135(10):1875–1885.

    Article  CAS  Google Scholar 

  12. Chang H, Guillou F, Taketo MM, Behringer RR. Overactive Beta-catenin signaling causes testicular Sertoli cell tumor development in the mouse. Biol Reprod. 2009;81(5):842–849.

    Article  CAS  Google Scholar 

  13. Liao DJ, Thakur A, Wu J, Biliran H, Sarkar FH. Perspectives on c-Myc, cyclin D1, and their interaction in cancer formation, progression, and response to chemotherapy. Crit Rev Oncog. 2007;13(2):93–158.

    Article  Google Scholar 

  14. Lim K, Yoo JH, Kim KY, Kweon GR, Kwak ST, Hwang BD. Testosterone regulation of proto-oncogene c-myc expression in primary Sertoli cell cultures from prepubertal rats. J Androl. 1994;15(6):543–550.

    CAS  PubMed  Google Scholar 

  15. Shachaf CM, Kopelman AM, Arvanitis C, et al. MYC inactivation uncovers pluripotent differentiation and tumour dormancy in hepatocellular cancer. Nature. 2004;431(7012):1112–1117.

    Article  CAS  Google Scholar 

  16. Giuriato S, Ryeom S, Fan AC, et al. Sustained regression of tumors upon MYC inactivation requires p53 or thrombospondin-1 to reverse the angiogenic switch. Proc Natl Acad Sci. 2006;103(44):16266–16271.

    Article  CAS  Google Scholar 

  17. Leder H, Pattengale PK, Kuo A, Stewart TA, Leder P. Consequences of widespread deregulation of the c-myc gene in transgenic mice: multiple neoplasmas and normal development. Cell. 1986;45(4):485–495.

    Article  CAS  Google Scholar 

  18. Lipshultz LI, Murthy L, Tindall DJ. Characterization of human Sertoli cells in vitro. J Clin Endocrinol Metab. 1982;55(2):228–237.

    Article  CAS  Google Scholar 

  19. Cheng CY, Mruk DD. An intracellular trafficking pathway in the seminiferous epithelium regulating spermatogenesis: a biochemical and molecular perspective. Crit Rev Biochem Mol Biol. 2009;44(5):245–263.

    Article  CAS  Google Scholar 

  20. Chaudhary J, Sadler-Riggleman I, Ague JM, Skinner MK. The helix-loophelix inhibitor of differentiation (ID) proteins induce post-mitotic terminally differentiated Sertoli cells to re-enter the cell cycle and proliferate. Biol Reprod. 2005;72(5):1205–1121.

    Article  CAS  Google Scholar 

  21. Kimura T, Nakamura T, Murayama K, et al. The stabilization of beta-catenin leads to impaired primordial germ cell development via aberrant cell cycle progression. Dev Biol. 2006;300(2): 545–553.

    Article  CAS  Google Scholar 

  22. Kim K, Pang KM, Evans M, Hay ED. Overexpression of beta-catenin induces apoptosis independent of its transactivation function with LEF-1 or the involvement of major G1 cell cycle regulators. Mol Biol Cell. 2000;11(10):3509–3523.

    Article  CAS  Google Scholar 

  23. Olmeda D, Castel S, Vilaro’ S, Cano A. Beta-catenin regulation during the cell cycle: implications in G2/M and apoptosis. Mol Biol Cell. 2003;14(7):2844–2860.

    Article  CAS  Google Scholar 

  24. Harada N, Tamai Y, Ishikawa T, et al. Intestinal polyposis in mice with a dominant stable mutation of the beta-catenin gene. EMBO J. 1999;18(21):5931–5942.

    Article  CAS  Google Scholar 

  25. Akiyama H, Lyons JP, Mori-Akiyama Y, et al. Interactions between Sox9 and beta-catenin control chondrocyte differentiation. Genes Dev. 2004;18(9):1072–1087.

    Article  CAS  Google Scholar 

  26. Bierie B, Nozawa M, Renou JP, et al. Activation of beta-catenin in prostate epithelium induces hyperplasias and squamous trans-differentiation. Oncogene.2003;22(25):3875–3887.

    Article  CAS  Google Scholar 

  27. Zechner D, Fujita Y, Hülsken J, et al. Beta-catenin signals regulate cell growth and the balance between progenitor cell expansion and differentiation in the nervous system. Dev Biol. 2003; 258(2):406–418.

    Article  CAS  Google Scholar 

  28. Moser AR, Pitot HC, Dove WF. A dominant mutation that predisposes to multiple intestinal neoplasia in the mouse. Science. 1990; 247:322–324.

    Article  CAS  Google Scholar 

  29. Romagnolo B, Berrebi D, Saadi-Keddoucci S, et al. Intestinal dysplasia and adenoma in transgenic mice after overexpression of an activated b-catenin. Cancer Res. 1999;59(16): 3875–3879.

    CAS  PubMed  Google Scholar 

  30. Boyer A, Paquet M, Laguë MN, Hermo L, Boerboom D. Dysregulation of WNT/CTNNB1 and PI3K/AKT signaling in testicular stromal cells causes granulosa cell tumor of the testis. Carcinogenesis. 2009;30(5):869–878.

    Article  CAS  Google Scholar 

  31. Richards JS, Fan HY, Liu Z, et al. Either Kras activation or Pten loss similarly enhance the dominant-stable CTNNB1-induced genetic program to promote granulosa cell tumor development in the ovary and testis. Oncogene. 2012;31(12): 1504–1520.

    Article  CAS  Google Scholar 

  32. Mostofi FK. Epidemiology and pathology of tumors of human testis. Recent Results. Cancer Res. 1977;(60):176–195.

    Google Scholar 

  33. Dang CV, Resar LM, Emison E, et al. Function of the c-Myc oncogenic transcription factor. Exp Cell Res. 1999;253(1): 63–77.

    Article  CAS  Google Scholar 

  34. Amati B, Alevizopoulos K, Vlach J. Myc and the cell cycle. Front Biosci. 1998;3:250–268.

    Article  Google Scholar 

  35. Henriksson M, Luscher B. Proteins of the Myc network: essential regulators of cell growth and differentiation. Cancer Res. 1996; 68:109–182.

    Article  CAS  Google Scholar 

  36. Marcu KB, Bossone SA, Patel AJ. myc function and regulation. Anniu Rev Biochem. 1992;61:809–860.

    Article  CAS  Google Scholar 

  37. Vlach J, Hennecke J, Alevizopoulos K, Conti D, Amati B. Growth arrest by the cyclin-dependent kinase inhibitor p27KiP1 is abrogated by c-Myc. EMBO J. 1996;15(23):6595–6604.

    Article  CAS  Google Scholar 

  38. Singh AM, Dalton S. The cell cycle and myc intersect with mechanisms for pluripotency and reprogramming. Cell Stem Cell. 2009;5(2):141–149.

    Article  CAS  Google Scholar 

  39. He TC, Sparks AB, Rago C, et al. Identification of c-MYC as a target of the APC pathway. Science. 1998;281(5382): 1509–1512.

    Article  CAS  Google Scholar 

  40. Myant K, Sansom OJ. Wnt/Myc interactions in intestinal cancer: Partners in crime. Exp Cell Res. 2011;317(19):2725–2731.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Hao PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Y., Gao, Q., Yin, G. et al. WNT/β-Catenin-Signaling Pathway Stimulates the Proliferation of Cultured Adult Human Sertoli Cells via Upregulation of C-myc Expression. Reprod. Sci. 19, 1232–1240 (2012). https://doi.org/10.1177/1933719112447126

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719112447126

Keywords

Navigation