Skip to main content
Log in

The Association Between Microenvironmental Reactive Oxygen Species and Embryo Development in Assisted Reproduction Technology Cycles

  • Original Articles
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

This study was designed to determine the relevance between the levels of reactive oxygen species (ROS) in microenvironment (follicular fluid or culture media) and the embryo development in IVF/ICSI cycles. A total of 466 follicles from 174 IVF/ICSI cycles were collected for this study. The ROS levels in monofollicular fluid and spent culture media were evaluated by chemiluminescence assay with luminol as a probe. The results demonstrated that it is in ICSI cycles that elevated ROS levels in follicular fluid were associated with day 3 poor embryo quality. The ROS levels in spent culture media were correlated with advanced degree of fragmentation. In addition, ROS levels in culture media, instead of in follicular fluid, were negatively correlated with implantation potential of embryos. The ROS levels in culture media may be viewed as an embryo metabolic marker and function as an adjuvant criterion for embryo selection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Balaban B, Urman B. Embryo culture as a diagnostic tool. Reprod Biomed Online. 2003;7(8):671–682

    Article  Google Scholar 

  2. Scott RT Jr, Treff NR. Assessing the reproductive competence of individual embryos: a proposal for the validation of new “-omics” technologies. Fertil Steril. 2010;94(3):791–794

    Article  Google Scholar 

  3. Gardner DK, Lane M. Towards a single embryo transfer. Reprod Biomed Online. 2003;6(4):470–481

    Article  Google Scholar 

  4. Miyazaki T, Sueoka K, Dharmarajan AM, Atlas SJ, Bulkley GB, Wallach EE. Effect of inhibition of oxygen free radical on ovulation and progesterone production by the in-vitro perfused rabbit ovary. J Reprod Fertil. 1991;91(1):207–212

    Article  CAS  Google Scholar 

  5. de Lamirande E, Harakat A, Gagnon C. Human sperm capacitation induced by biological fluids and progesterone, but not by NADH or NADPH, is associated with the production of superoxide anion. J Androl. 1998;19(2):215–225

    PubMed  Google Scholar 

  6. Agarwal A, Saleh RA, Bedaiwy MA. Role of reactive oxygen species in the pathophysiology of human reproduction. Fertil Steril. 2003;79(4):829–843

    Article  Google Scholar 

  7. Guerin P, El Mouatassim S, Menezo Y. Oxidative stress and protection against reactive oxygen species in the pre-implantation embryo and its surroundings. Hum Reprod Update. 2001;7(2):175–189

    Article  CAS  Google Scholar 

  8. Fujii J, Iuchi Y, Okada F. Fundamental roles of reactive oxygen species and protective mechanisms in the female reproductive system. Reprod Biol Endocrinol. 2005;3:43

    Article  Google Scholar 

  9. Goto Y, Noda Y, Mori T, Nakano M. Increased generation of reactive oxygen species in embryos cultured in vitro. Free Radic Biol Med. 1993;15(1):69–75

    Article  CAS  Google Scholar 

  10. Wiener-Megnazi Z, Vardi L, Lissak A, et al. Oxidative stress indices in follicular fluid as measured by the thermochemiluminescence assay correlate with outcome parameters in in vitro fertilization. Fertil Steril. 2004;82(suppl 3):1171–1176

    Article  CAS  Google Scholar 

  11. Pasqualotto EB, Agarwal A, Sharma RK, et al. Effect of oxidative stress in follicular fluid on the outcome of assisted reproductive procedures. Fertil Steril. 2004;81(4):973–976

    Article  CAS  Google Scholar 

  12. Das S, Chattopadhyay R, Ghosh S, et al. Reactive oxygen species level in follicular fluid–embryo quality marker in IVF? Hum Reprod. 2006;21(9):2403–2407

    Article  CAS  Google Scholar 

  13. Bedaiwy MA, Falcone T, Mohamed MS, et al. Differential growth of human embryos in vitro: role of reactive oxygen species. Fertil Steril. 2004;82(3):593–600

    Article  CAS  Google Scholar 

  14. Bedaiwy MA, Mahfouz RZ, Goldberg JM, et al. Relationship of reactive oxygen species levels in day 3 culture media to the outcome of in vitro fertilization/intracytoplasmic sperm injection cycles. Fertil Steril. 2010;94(6):2037–2042

    Article  CAS  Google Scholar 

  15. Huang CC, Lin DP, Tsao HM, Cheng TC, Liu CH, Lee MS. Sperm DNA fragmentation negatively correlates with velocity and fertilization rates but might not affect pregnancy rates. Fertil Steril. 2005;84(1):130–140

    Article  Google Scholar 

  16. Steer CV, Mills CL, Tan SL, Campbell S, Edwards RG. The cumulative embryo score: a predictive embryo scoring technique to select the optimal number of embryos to transfer in an in-vitro fertilization and embryo transfer programme. Hum Reprod. 1992;7(1):117–119

    Article  CAS  Google Scholar 

  17. Van Royen E, Mangelschots K, De Neubourg D, et al. Characterization of a top quality embryo, a step towards single-embryo transfer. Hum Reprod. 1999;14(9):2345–2349

    Article  Google Scholar 

  18. Lee TH, Wu MY, Chen MJ, Chao KH, Ho HN, Yang YS. Nitric oxide is associated with poor embryo quality and pregnancy outcome in in vitro fertilization cycles. Fertil Steril. 2004;82(1):126–131

    Article  CAS  Google Scholar 

  19. Kobayashi H, Gil-Guzman E, Mahran AM, et al. Quality control of reactive oxygen species measurement by luminol-dependent chemiluminescence assay. J Androl. 2001;22(4):568–574

    CAS  PubMed  Google Scholar 

  20. Agarwal A, Allamaneni SS, Said TM. Chemiluminescence technique for measuring reactive oxygen species. Reprod Biomed Online. 2004;9(4):466–468

    Article  CAS  Google Scholar 

  21. El Mouatassim S, Guerin P, Menezo Y. Expression of genes encoding antioxidant enzymes in human and mouse oocytes during the final stages of maturation. Mol Hum Reprod. 1999;5(8):720–725

    Article  CAS  Google Scholar 

  22. Jurisicova A, Varmuza S, Casper RF. Programmed cell death and human embryo fragmentation. Mol Hum Reprod. 1996;2(2):93–98

    Article  CAS  Google Scholar 

  23. Lopes AS, Lane M, Thompson JG. Oxygen consumption and ROS production are increased at the time of fertilization and cell cleavage in bovine zygotes. Hum Reprod. 2010;25(11):2762–2773

    Article  CAS  Google Scholar 

  24. Trimarchi JR, Liu L, Porterfield DM, Smith PJ, Keefe DL. Oxidative phosphorylation-dependent and -independent oxygen consumption by individual preimplantation mouse embryos. Biol Reprod. 2000;62(6):1866–1874

    Article  CAS  Google Scholar 

  25. Bedaiwy MA, Mahfouz RZ, Goldberg JM, et al. Relationship of reactive oxygen species levels in day 3 culture media to the outcome of in vitro fertilization/intracytoplasmic sperm injection cycles. Fertil Steril. 2010;94(6):2037–2042

    Article  CAS  Google Scholar 

  26. Yang HW, Hwang KJ, Kwon HC, Kim HS, Choi KW, Oh KS. Detection of reactive oxygen species (ROS) and apoptosis in human fragmented embryos. Hum Reprod. 1998;13(4):998–1002

    Article  CAS  Google Scholar 

  27. Seli E, Sakkas D, Scott R, Kwok SC, Rosendahl SM, Burns DH. Noninvasive metabolomic profiling of embryo culture media using Raman and near-infrared spectroscopy correlates with reproductive potential of embryos in women undergoing in vitro fertilization. Fertil Steril. 2007;88(5):1350–1357

    Article  Google Scholar 

  28. Seli E, Vergouw CG, Morita H, et al. Noninvasive metabolomic profiling as an adjunct to morphology for noninvasive embryo assessment in women undergoing single embryo transfer. Fertil Steril. 2010;94(2):535–542

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Shih Yang MD, PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, TH., Lee, MS., Liu, CH. et al. The Association Between Microenvironmental Reactive Oxygen Species and Embryo Development in Assisted Reproduction Technology Cycles. Reprod. Sci. 19, 725–732 (2012). https://doi.org/10.1177/1933719111432858

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719111432858

Keywords

Navigation