Skip to main content

Advertisement

Log in

Long-Term Maternal Hypoxia

The Role of Extracellular Ca2+ Entry During Serotonin-Mediated Contractility in Fetal Ovine Pulmonary Arteries

  • Articles
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Antenatal maternal long-term hypoxia (LTH) can alter serotonin (5-HT) and calcium (Ca2+) signaling in fetal pulmonary arteries (PAs) and is associated with persistent pulmonary hypertension of the newborn (PPHN). In humans, the antenatal maternal hypoxia can be secondary to smoking, anemia, and chronic obstructive pulmonary disorders. However, the mechanisms of antenatal maternal hypoxia-related PPHN are unresolved. Because both LTH and 5-HT are associated with PPHN, we tested the hypothesis that antenatal maternal LTH can increase 5-HT-mediated PA contraction and associated extracellular Ca2+ influx through L-type Ca2+ channels (CaL), nonselective cation channels (NSCCs), and reverse-mode sodium–calcium exchanger (NCX) in the near-term fetus. We performed wire myography and confocal-Ca2+ imaging approaches on fetal lamb PA (∼140 days of gestation) from normoxic ewes or those acclimatized to high-altitude LTH (3801 m) for ∼110 days. Long-term hypoxia reduced the potency but not the efficacy of 5-HT-induced PA contraction. Ketanserin (100 nmol/L), a 5-HT2A antagonist, shifted 5-HT potency irrespective of LTH, while GR-55562 (1 µmol/L), a 5-HT1B/D inhibitor, antagonized 5-HT-induced contraction in normoxic fetuses only. Various inhibitors for CaL, NSCC, and reverse-mode NCX were used in contraction studies. Contraction was reliant on extracellular Ca2+ regardless of maternal hypoxia, NSCC was more important to contraction than CaL, and reverse-mode NCX had little or no role in contraction. Long-term hypoxia also attenuated the effects of 2-APB and flufenamic acid and reduced Ca2+ responses observed by imaging studies. Overall, LTH reduced 5HT1B/D function and increased NSCC-related Ca2+-dependent contraction in ovine fetuses, which may compromise pulmonary vascular function in the newborn.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gabbay E, Reed A, Williams TJ. Assessment and treatment of pulmonary arterial hypertension: an Australian perspective in 2006. Intern Med J. 2007;37(1):38–48

    Article  CAS  PubMed  Google Scholar 

  2. Danhaive O, Margossian R, Geva T, Kourembanas S. Pulmonary hypertension and right ventricular dysfunction in growth-restricted, extremely low birth weight neonates. J Perinatol. 2005;25(7):495–499

    Article  PubMed  Google Scholar 

  3. Herrera EA, Riquelme RA, Ebensperger G, et al. Long-term exposure to high-altitude chronic hypoxia during gestation induces neonatal pulmonary hypertension at sea level. Am J of Physiol Reg Int Comp Physiol. 2010;299(6):R1676–R1684

    Article  CAS  Google Scholar 

  4. Gao Y, Portugal AD, Liu J, et al. Preservation of cGMP-induced relaxation of pulmonary veins of fetal lambs exposed to chronic high altitude hypoxia: role of PKG and Rho kinase. Am J Physiol Lung Cell Mol Physiol. 2008;295(5):L889–L896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gao Y, Portugal AD, Negash S, Zhou W, Longo LD, Usha Raj J. Role of Rho kinases in PKG-mediated relaxation of pulmonary arteries of fetal lambs exposed to chronic high altitude hypoxia. Am J Physiol Lung Cell Mol Physiol. 2007;292(3):L678–L684

    Article  CAS  PubMed  Google Scholar 

  6. Sheng L, Zhou W, Hislop AA, Ibe BO, Longo LD, Raj JU. Role of epidermal growth factor receptor in ovine fetal pulmonary vascular remodeling following exposure to high altitude long-term hypoxia. High Alt Med Biol. 2009;10(4):365–372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Gao Y, Raj JU. Regulation of the pulmonary circulation in the fetus and newborn. Physiol Rev. 2010;90(4):1291–1335

    Article  CAS  PubMed  Google Scholar 

  8. Toga H, Hibler S, Ibe BO, Raj JU. Vascular effects of platelet-activating factor in lambs: role of cyclo- and lipoxygenase. J Appl Physiol. 1992;73(6):2559–2566

    Article  CAS  PubMed  Google Scholar 

  9. Bixby CE, Ibe BO, Abdallah MF, et al. Role of platelet-activating factor in pulmonary vascular remodeling associated with chronic high altitude hypoxia in ovine fetal lambs. Am J Physiol Lung Cell Mol Physiol. 2007;293(6):L1475–L1482

    Article  CAS  PubMed  Google Scholar 

  10. Chambers CD, Hernandez-Diaz S, Van Marter LJ, et al. Selective serotonin-reuptake inhibitors and risk of persistent pulmonary hypertension of the newborn. N Engl J Med. 2006;354(6):579–587

    Article  CAS  PubMed  Google Scholar 

  11. MacLean MR, Herve P, Eddahibi S, Adnot S. 5-Hydroxytryptamine and the pulmonary circulation: receptors, transporters and relevance to pulmonary arterial hypertension. Br J Pharmacol. 2000;131(2):161–168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Morecroft I, MacLean MR. 5-hydroxytryptamine receptors mediating vasoconstriction and vasodilation in perinatal and adult rabbit small pulmonary arteries. Br J Pharmacol. 1998;125(1):69–78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Keegan A, Morecroft I, Smillie D, Hicks MN, MacLean MR. Contribution of the 5-HT1B receptor to hypoxia-induced pulmonary hypertension: converging evidence using 5-HT1B-receptor knockout mice and the 5-HT1B/1D-receptor antagonist GR127935. Circ Res. 2001;89(12):1231–1239

    Article  CAS  PubMed  Google Scholar 

  14. Heffner JE, Sahn SA, Repine JE. The role of platelets in the adult respiratory distress syndrome. Culprits or bystanders? Am Rev Respir Dis. 1987;135(2):482–492

    CAS  PubMed  Google Scholar 

  15. Herve P, Launay JM, Scrobohaci ML, et al. Increased plasma serotonin in primary pulmonary hypertension. Am J Med. 1995;99(3):249–254

    Article  CAS  PubMed  Google Scholar 

  16. Wilson SM, Mason HS, Ng LC, et al. Role of basal extracellular Ca2+ entry during 5-HT-induced vasoconstriction of canine pulmonary arteries. Br J Pharmacol. 2005;144(2):252–264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Slodzinski MK, Blaustein MP. Physiological effects of Na+/ Ca2+ exchanger knockdown by antisense oligodeoxynucleotides in arterial myocytes. Am J Physiol Cell Physiol. 1998;275(1):C251–C259

    Article  CAS  Google Scholar 

  18. Slodzinski MK, Juhaszova M, Blaustein MP. Antisense inhibition of Na+/Ca2+ exchange in primary cultured arterial myocytes. Am J Physiol Cell Physiol. 1995;269(5):C1340–C1345

    Article  CAS  Google Scholar 

  19. Zhang S, Yuan JX, Barrett KE, Dong H. Role of Na+/Ca2+ exchange in regulating cytosolic Ca2+ in cultured human pulmonary artery smooth muscle cells. Am J Physiol Cell Physiol. 2005;288(2):C245–C252

    Article  CAS  PubMed  Google Scholar 

  20. Zhang S, Dong H, Rubin LJ, Yuan JX. Upregulation of Na+/ Ca2+ exchanger contributes to the enhanced Ca2+ entry in pulmonary artery smooth muscle cells from patients with idiopathic pulmonary arterial hypertension. Am J Physiol Cell Physiol. 2007;292(6):C2297–C2305

    Article  CAS  PubMed  Google Scholar 

  21. Rodat L, Savineau JP, Marthan R, Guibert C. Effect of chronic hypoxia on voltage-independent calcium influx activated by 5-HT in rat intrapulmonary arteries. Pflugers Arch. 2007;454(1):41–51

    Article  CAS  PubMed  Google Scholar 

  22. Shimoda LA, Sham JS, Shimoda TH, Sylvester JT. L-type Ca(2+) channels, resting [Ca(2+)](i), and ET-1-induced responses in chronically hypoxic pulmonary myocytes. Am J Physiol Lung Cell Mol Physiol. 2000;279(5):L884–L894

    Article  CAS  PubMed  Google Scholar 

  23. Hirenallur SD, Haworth ST, Leming JT, et al. Upregulation of vascular calcium channels in neonatal piglets with hypoxia-induced pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol. 2008;295(5):L915–L924

    Article  CAS  Google Scholar 

  24. Lin MJ, Leung GP, Zhang WM, et al. Chronic hypoxia-induced upregulation of store-operated and receptor-operated Ca2+ channels in pulmonary arterial smooth muscle cells: a novel mechanism of hypoxic pulmonary hypertension. Circ Res. 2004;95(5):496–505

    Article  CAS  PubMed  Google Scholar 

  25. Jernigan NL, Broughton BR, Walker BR, Resta TC. Impaired NO-dependent inhibition of store- and receptor-operated calcium entry in pulmonary vascular smooth muscle after chronic hypoxia. Am J Physiol Lung Cell Mol Physiol. 2006;290(3):L517–L525

    Article  CAS  PubMed  Google Scholar 

  26. Zhang S, Patel HH, Murray F, et al. Pulmonary artery smooth muscle cells from normal subjects and IPAH patients show divergent cAMP-mediated effects on TRPC expression and capacitative Ca2+ entry. Am J Physiol Lung Cell Mol Physiol. 2007;292(5):L1202–L1210

    Article  CAS  PubMed  Google Scholar 

  27. Yu Y, Sweeney M, Zhang S, et al. PDGF stimulates pulmonary vascular smooth muscle cell proliferation by upregulating TRPC6 expression. Am J Physiol Cell Physiol. 2003;284(2):C316–C330

    Article  CAS  PubMed  Google Scholar 

  28. Kunichika N, Yu Y, Remillard CV, Platoshyn O, Zhang S, Yuan JX. Overexpression of TRPC1 enhances pulmonary vasoconstriction induced by capacitative Ca2+ entry. Am J Physiol Lung Cell Mol Physiol. 2004;287(5):L962–L969

    Article  CAS  PubMed  Google Scholar 

  29. Sweeney M, Yu Y, Platoshyn O, Zhang S, McDaniel SS, Yuan JX. Inhibition of endogenous TRP1 decreases capacitative Ca2+ entry and attenuates pulmonary artery smooth muscle cell proliferation. Am J Physiol Lung Cell Mol Physiol. 2002;283(1):L144–L155

    Article  CAS  PubMed  Google Scholar 

  30. Yu Y, Fantozzi I, Remillard CV, et al. Enhanced expression of transient receptor potential channels in idiopathic pulmonary arterial hypertension. Proc Natl Acad Sci USA. 2004;101(38):13861–13866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Landsberg JW, Yuan JX. Calcium and TRP channels in pulmonary vascular smooth muscle cell proliferation. News Physiol Sci. 2004;19(2):44–50

    CAS  PubMed  Google Scholar 

  32. Ibe BO, Portugal AM, Chaturvedi S, Raj JU. Oxygen-dependent PAF receptor binding and intracellular signaling in ovine fetal pulmonary vascular smooth muscle. Am J Physiol Lung Cell Mol Physiol. 2005;288(5):L879–L886

    Article  CAS  PubMed  Google Scholar 

  33. Longo LD, Ueno N, Zhao Y, Zhang L, Pearce WJ. NE-induced contraction, alpha 1-adrenergic receptors, and Ins(1,4,5)P3 responses in cerebral arteries. Am J Physiol Heart Circ Physiol. 1996;270(3):H915–H923

    Article  CAS  Google Scholar 

  34. Kamitomo M, Longo LD, Gilbert RD. Cardiac function in fetal sheep during two weeks of hypoxemia. Am J Physiol Renal Physiol. 1994;266(6):R1778–R1785

    CAS  Google Scholar 

  35. Goyal R, Mittal A, Chu N, Shi L, Zhang L, Longo LD. Maturation and the role of PKC-mediated contractility in ovine cerebral arteries. Am J Physiol Heart Circ Physiol. 2009;297(6):H2242–H2252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Xue Q, Ducsay CA, Longo LD, Zhang L. Effect of long-term high-altitude hypoxia on fetal pulmonary vascular contractility. J Appl Physiol. 2008;104(6):1786–1792

    Article  CAS  PubMed  Google Scholar 

  37. Ng LC, Wilson SM, Hume JR. Mobilization of sarcoplasmic reticulum stores by hypoxia leads to consequent activation of capacitative Ca2+ entry in isolated canine pulmonary arterial smooth muscle cells. J Physiol. 2005;563(pt 2):409–419

    Article  CAS  PubMed  Google Scholar 

  38. Ward JP, Snetkov VA. Determination of signaling pathways responsible for hypoxic pulmonary vasoconstriction: use of the small vessel myograph. Methods Enzymol. 2004;381:71–87

    Article  CAS  PubMed  Google Scholar 

  39. Goyal R, Mittal A, Chu N, Zhang L, Longo LD. Alpha1-adrenergic receptor subtype function in fetal and adult cerebral arteries. Am J Physiol Heart Circ Physiol. 2010;298(6):H1797–H1806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Holford NH, Sheiner LB. Understanding the dose-effect relationship: clinical application of pharmacokinetic-pharmacodynamic models. Clin Pharmacokinet. 1981;6(6):429–453

    Article  CAS  PubMed  Google Scholar 

  41. Morecroft I, Heeley RP, Prentice HM, Kirk A, MacLean MR. 5-Hydroxytryptamine receptors mediating contraction in human small muscular pulmonary arteries: importance of the 5-HT1B receptor. Br J Pharmacol. 1999;128(3):730–734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Jahnichen S, Glusa E, Pertz HH. Evidence for 5-HT2B and 5-HT7 receptor-mediated relaxation in pulmonary arteries of weaned pigs. Naunyn Schmiedebergs Arch of Pharmacol. 2005;371(1):89–98

    Article  CAS  Google Scholar 

  43. Jaw SP, Hussong MJ, Matsumoto RR, Truong DD. Involvement of 5-HT2 receptors in posthypoxic stimulus-sensitive myoclonus in rats. Pharmacol Biochem Behav. 1994;49(1):129–131

    Article  CAS  PubMed  Google Scholar 

  44. Wilson SM, Mason HS, Smith GD, et al. Comparative capacitative calcium entry mechanisms in canine pulmonary and renal arterial smooth muscle cells. J Physiol. 2002;543(3):917–931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Millard RW, Lathrop DA, Grupp G, Ashraf M, Grupp IL, Schwartz A. Differential cardiovascular effects of calcium channel blocking agents: potential mechanisms. Am J Cardiol. 1982;49(3):499–506

    Article  CAS  PubMed  Google Scholar 

  46. Merritt JE, Armstrong WP, Benham CD, et al. SK&F 96365, a novel inhibitor of receptor-mediated calcium entry. Biochem J. 1990;271(2):515–522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ng LC, Wilson SM, McAllister CE, Hume JR. Role of InsP3 and ryanodine receptors in the activation of capacitative Ca2+ entry by store depletion or hypoxia in canine pulmonary arterial smooth muscle cells. Br J Pharmacol. 2007;152(1):101–111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Alexander SPH, Mathie A, Peters JA. Guide to Receptors and Channels (GRAC), 4th Ed. Br J Pharmacol. 2009;158(suppl 1):S1–S254

    CAS  Google Scholar 

  49. Ramsey IS, Delling M, Clapham DE. An introduction to TRP channels. Ann Rev Physiol. 2006;68:619–647

    Article  CAS  Google Scholar 

  50. Krautwurst D, Degtiar VE, Schultz G, Hescheler J. The isoquinoline derivative LOE 908 selectively blocks vasopressin-activated nonselective cation currents in A7r5 aortic smooth muscle cells. Naunyn Schmiedebergs Arch Pharmacol. 1994;349(3):301–307

    Article  CAS  PubMed  Google Scholar 

  51. Guibert C, Marthan R, Savineau JP. 5-HT induces an arachidonic acid-sensitive calcium influx in rat small intrapulmonary artery. Am J Physiol Lung Cell Mol Physiol. 2004;286(6):L1228–L1236

    Article  CAS  PubMed  Google Scholar 

  52. Blaustein MP, Lederer WJ. Sodium/calcium exchange: its physiological implications. Physiol Rev. 1999;79(3):763–854

    Article  CAS  PubMed  Google Scholar 

  53. Kraft R. The Na+/Ca2+ exchange inhibitor KB-R7943 potently blocks TRPC channels. Biochem Biophys Res Commun. 2007;361(1):230–236

    Article  CAS  PubMed  Google Scholar 

  54. Niu CF, Watanabe Y, Iwamoto T, et al. Electrophysiological effects of SN-6, a novel Na+/Ca2+ exchange inhibitor on membrane currents in guinea pig ventricular myocytes. Ann N Y Acad Sci. 2007;1099:534–539

    Article  PubMed  CAS  Google Scholar 

  55. Goyal R, Creel KD, Chavis E, Smith GD, Longo LD, Wilson SM. Maturation of intracellular calcium homeostasis in sheep pulmonary arterial smooth muscle cells. Am J Physiol Lung Cell Mol Physiol. 2008;295(5):L905–L914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Dempsie Y, MacLean MR. Pulmonary hypertension: therapeutic targets within the serotonin system. Br J Pharmacol. 2008;155(4):455–462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Dempsie Y, Morecroft I, Welsh DJ, et al. Converging evidence in support of the serotonin hypothesis of dexfenfluramine-induced pulmonary hypertension with novel transgenic mice. Circulation. 2008;117(22):2928–2937

    Article  CAS  PubMed  Google Scholar 

  58. MacLean MR, Morecroft I. Increased contractile response to 5-hydroxytryptamine1-receptor stimulation in pulmonary arteries from chronic hypoxic rats: role of pharmacological synergy. Br J Pharmacol. 2001;134(3):614–620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. MacLean MR, Sweeney G, Baird M, McCulloch KM, Houslay M, Morecroft I. 5-hydroxytryptamine receptors mediating vasoconstriction in pulmonary arteries from control and pulmonary hypertensive rats. Br J Pharmacol. 1996;119(5):917–930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Morecroft I, Loughlin L, Nilsen M, et al. Functional interactions between 5-hydroxytryptamine receptors and the serotonin transporter in pulmonary arteries. J Pharmacol Exp Therap. 2005;313(2):539–548

    Article  CAS  Google Scholar 

  61. Morecroft I, Pang L, Baranowska M, et al. In vivo effects of a combined 5-HT1B receptor/SERT antagonist in experimental pulmonary hypertension. Cardiovasc Res. 2010;85(3):593–603

    Article  CAS  PubMed  Google Scholar 

  62. Wang J, Weigand L, Foxson J, Shimoda LA, Sylvester JT. Ca2+ signaling in hypoxic pulmonary vasoconstriction: effects of myosin light chain and Rho kinase antagonists. Am J Physiol Lung Cell Mol Physiol. 2007;293(3):L674–L685

    Article  CAS  PubMed  Google Scholar 

  63. Broughton BR, Walker BR, Resta TC. Chronic hypoxia induces Rho kinase-dependent myogenic tone in small pulmonary arteries. Am J Physiol Lung Cell Mol Physiol. 2008;294(4):L797–L806

    Article  CAS  PubMed  Google Scholar 

  64. Oka M, Homma N, McMurtry IF. Rho kinase-mediated vasoconstriction in rat models of pulmonary hypertension. Methods Enzymol. 2008;439:191–204

    Article  CAS  PubMed  Google Scholar 

  65. Nagaoka T, Gebb SA, Karoor V, et al. Involvement of RhoA/Rho kinase signaling in pulmonary hypertension of the fawn-hooded rat. J Appl Physiol. 2006;100(3):996–1002

    Article  CAS  PubMed  Google Scholar 

  66. Guilluy C, Eddahibi S, Agard C, et al. RhoA and Rho kinase activation in human pulmonary hypertension: role of 5-HT signaling. Am J Respir Crit Care Med. 2009;179(12):1151–1158

    Article  CAS  PubMed  Google Scholar 

  67. Goyal R, Nguyen D, Loftin M, et al. Contributions of PKC, RhoA and ERK signaling to serotonergic contractility of pulmonary arteries from chronic hypoxic fetal and adult sheep. FASEB J. 2008;22:1150–1153

    Google Scholar 

  68. Bonnet S, Belus A, Hyvelin JM, Roux E, Marthan R, Savineau JP. Effect of chronic hypoxia on agonist-induced tone and calcium signaling in rat pulmonary artery. Am J Physiol Lung Cell Mol Physiol. 2001;281(1):L193–L201

    Article  CAS  PubMed  Google Scholar 

  69. Kita S, Iwamoto T. Inhibitory mechanism of SN-6, a novel benzyloxyphenyl Na+/Ca2+ exchange inhibitor. Ann N Y Acad Sci. 2007;1099(1):529–533

    Article  CAS  PubMed  Google Scholar 

  70. Niu CF, Watanabe Y, Ono K, et al. Characterization of SN-6, a novel Na+/Ca2+ exchange inhibitor in guinea pig cardiac ventricular myocytes. Eur J Pharmacol. 2007;573(1–3):161–169

    Article  CAS  PubMed  Google Scholar 

  71. Soboloff J, Spassova M, Xu W, He LP, Cuesta N, Gill DL. Role of endogenous TRPC6 channels in Ca2+ signal generation in A7r5 smooth muscle cells. J Biol Chem. 2005;280(48):39786–39794

    Article  CAS  PubMed  Google Scholar 

  72. Wang J, Shimoda LA, Sylvester JT. Capacitative calcium entry and TRPC channel proteins are expressed in rat distal pulmonary arterial smooth muscle. Am J Physiol Lung Cell Mol Physiol. 2004;286(4):L848–L858

    Article  CAS  PubMed  Google Scholar 

  73. Yang XR, Lin MJ, McIntosh LS, Sham JS. Functional expression of transient receptor potential melastatin- and vanilloid-related channels in pulmonary arterial and aortic smooth muscle. Am J Physiol Lung Cell Mol Physiol. 2006;290(6):L1267–L1276

    Article  CAS  PubMed  Google Scholar 

  74. Zhu X, Jiang M, Birnbaumer L. Receptor-activated Ca2+ influx via human Trp3 stably expressed in human embryonic kidney (HEK)293 cells. Evidence for a non-capacitative Ca2+ entry. J Biol Chem. 1998;273(1):133–142

    Article  CAS  PubMed  Google Scholar 

  75. Resnik ER, Keck M, Sukovich DJ, Herron JM, Cornfield DN. Chronic intrauterine pulmonary hypertension increases capacitative calcium entry in fetal pulmonary artery smooth muscle cells. Am J Physiol Lung Cell Mol Physiol. 2007;292(4):L953–L959

    Article  CAS  PubMed  Google Scholar 

  76. Lu W, Wang J, Shimoda LA, Sylvester JT. Differences in STIM1 and TRPC expression in proximal and distal pulmonary arterial smooth muscle are associated with differences in Ca2+ responses to hypoxia. Am J Physiol Lung Cell Mol Physiol. 2008;295(1):L104–L113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Walker RL, Hume JR, Horowitz B. Differential expression and alternative splicing of TRP channel genes in smooth muscles. Am J Physiol Cell Physiol. 2001;280(5):C1184–C1192

    Article  CAS  PubMed  Google Scholar 

  78. Eddahibi S, Raffestin B, Pham I, et al. Treatment with 5-HT potentiates development of pulmonary hypertension in chronically hypoxic rats. Am J Physiol Heart Circ Physiol. 1997;272(3):H1173–H1181

    Article  CAS  Google Scholar 

  79. Egermayer P, Town GI, Peacock AJ. Role of serotonin in the pathogenesis of acute and chronic pulmonary hypertension. Thorax. 1999;54(2):161–168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Marcos E, Fadel E, Sanchez O, et al. Serotonin-induced smooth muscle hyperplasia in various forms of human pulmonary hypertension. Circ Res. 2004;94(9):1263–1270

    Article  CAS  PubMed  Google Scholar 

  81. Nagaoka T, Muramatsu M, Sato K, McMurtry I, Oka M, Fukuchi Y. Mild hypoxia causes severe pulmonary hypertension in fawn-hooded but not in tester moriyama rats. Resp Physiol. 2001;127(1):53–60

    Article  CAS  Google Scholar 

  82. Tucker A, McMurtry IF, Reeves JT, Alexander AF, Will DH, Grover RF. Lung vascular smooth muscle as a determinant of pulmonary hypertension at high altitude. Am J Physiol. 1975;228(3):762–767

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sean M. Wilson PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goyal, R., Papamatheakis, D.G., Loftin, M. et al. Long-Term Maternal Hypoxia. Reprod. Sci. 18, 948–962 (2011). https://doi.org/10.1177/1933719111401660

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719111401660

Keywords

Navigation