Skip to main content
Log in

A Mouse Model of Term Chorioamnionitis Unraveling Causes of Adverse Neurological Outcomes

  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Maternal fever and/or chorioamnionitis at term are associated with an increased prevalence of adverse neurobehavioral outcomes in exposed offspring. Since the mechanisms of such injury are currently unknown, the objectives of this study were to elucidate whether intrauterine inflammation at term results in fetal brain injury. Specifically, we assessed brain injury by investigating the cytokine response, white matter damage, and neuronal injury and viability. A mouse model of intrauterine inflammation at term was utilized by injecting lipopolysaccharide (LPS), or normal saline into uterine horn. Compared to saline-exposed, LPS-exposed fetal brains had significantly increased IL-1β and IL-6 messenger RNA (mRNA) expression (P < .05 for both) and IL-6 protein levels by enzyme-linked immunosorbent assay (ELISA;P < 0.05). Fetal neurons were affected by the intrauterine and fetal brain inflammation, as demonstrated by significantly decreased microtubule-associated protein 2 (MAP2) mRNA expression and a decrease in immunocytochemical staining (a marker of neuronal cytoskeleton development;P < .05), altered neuronal morphology (P < 0.05), and delayed neurotoxicity (P < .05). These fetal neuronal changes occurred without overt changes in white matter damage markers. Marker of astrocyte development and astrogliosis (glial fibrillary acidic protein [GFAP]) did not show an increase; pro-oligodendrocyte marker (PLP1/DM20) was not significantly changed (P > .05). These studies may provide a critical mechanism for the observed long-term adverse neurobehavioral outcomes after exposure to chorioamnionitis at term.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Soper DE, Mayhall CG, Froggatt JW. Characterization and control of intraamniotic infection in an urban teaching hospital. Am J Obstet Gynecol. 1996;175(2):304–309; discussion 309–310.

    Article  CAS  PubMed  Google Scholar 

  2. Soper DE, Mayhall CG, Dalton HP. Risk factors for intraamniotic infection: a prospective epidemiologic study. Am J Obstet Gynecol. 1989;161(3):562–566; discussion 566–568.

    Article  CAS  PubMed  Google Scholar 

  3. Shatrov JG, Birch SC, Lam LT, Quinlivan JA, McIntyre S, Mendz GL. Chorioamnionitis and cerebral palsy: a meta-analysis. Obstet Gynecol. 2010;116(2 Pt 1):387–392.

    Article  PubMed  Google Scholar 

  4. Becroft DM, Thompson JM, Mitchell EA. Placental chorioamnionitis at term: epidemiology and follow-up in childhood. Pediatr Dev Pathol. 2010; 13(4): 282–90.

    Article  PubMed  Google Scholar 

  5. Impey LW, Greenwood CE, Black RS, Yeh PS, Sheil O, Doyle P. The relationship between intrapartum maternal fever and neonatal acidosis as risk factors for neonatal encephalopathy. Am J Obstet Gynecol. 2008;198(1):49.e41–e46.

    Article  Google Scholar 

  6. Nelson KB, Ellenberg JH. Antecedents of cerebral palsy. I. Univariate analysis of risks. Am J Dis Child. 1985;139(10):1031–1038.

    Article  CAS  PubMed  Google Scholar 

  7. Nelson KB, Ellenberg JH. Antecedents of cerebral palsy. Multivariate analysis of risk. N Engl J Med. 1986;315(2):81–86.

    CAS  PubMed  Google Scholar 

  8. Grether JK, Nelson KB. Maternal infection and cerebral palsy in infants of normal birth weight. JAMA. 1997;278(3):207–211.

    Article  CAS  PubMed  Google Scholar 

  9. Wu YW, Colford JM Jr. Chorioamnionitis as a risk factor for cerebral palsy: a meta-analysis. JAMA. 2000;284(11): 1417–1424.

    Article  CAS  PubMed  Google Scholar 

  10. Wu YW, Croen LA, Shah SJ, Newman TB, Najjar DV. Cerebral palsy in a term population: risk factors and neuroimaging findings. Pediatrics. 2006;118(2):690–697.

    Article  PubMed  Google Scholar 

  11. Wu YW, Escobar GJ, Grether JK, Croen LA, Greene JD, Newman TB. Chorioamnionitis and cerebral palsy in term and near-term infants. JAMA. 2003;290(20):2677–2684.

    Article  CAS  PubMed  Google Scholar 

  12. Neufeld MD, Frigon C, Graham AS, Mueller BA. Maternal infection and risk of cerebral palsy in term and preterm infants. J Perinatol. 2005;25(2):108–113.

    Article  PubMed  Google Scholar 

  13. Nelson KB, Dambrosia JM, Grether JK, Phillips TM. Neonatal cytokines and coagulation factors in children with cerebral palsy. Ann Neurol. 1998;44(4):665–675.

    Article  CAS  PubMed  Google Scholar 

  14. Nitsos I, Rees SM, Duncan J, et al. Chronic exposure to intraamniotic lipopolysaccharide affects the ovine fetal brain. J Soc Gynecol Investig. 2006;13(4):239–247.

    Article  CAS  PubMed  Google Scholar 

  15. Burd I, Bentz AI, Chai J, et al. Inflammation-induced preterm brith alters neuronal morphology in the mouse fetal brain. J Neurosci Res. 2010;88(9):1872–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Burd I, Bentz A, Gonzalez J, et al. Inflammation-induced preterm birth alters neuronal morphology in the mouse fetal brain. J Neurosci Res. 2010; in press.

  17. Elovitz MA, Mrinalini C, Sammel MD. Elucidating the early signal transduction pathways leading to fetal brain injury in preterm birth. Pediatr Res. 2006;59(1):50–55.

    Article  PubMed  Google Scholar 

  18. Debillon T, Gras-Leguen C, Leroy S, Caillon J, Roze JC, Gressens P. Patterns of cerebral inflammatory response in a rabbit model of intrauterine infection-mediated brain lesion. Brain Res Dev Brain Res. 2003;145(1):39–48.

    Article  CAS  PubMed  Google Scholar 

  19. Bell MJ, Hallenbeck JM. Effects of intrauterine inflammation on developing rat brain. J Neurosci Res. 2002;70(4):570–579.

    Article  CAS  PubMed  Google Scholar 

  20. Leviton A, Gressens P. Neuronal damage accompanies perinatal white-matter damage. Trends Neurosci. 2007;30(9): 473–478.

    Article  CAS  PubMed  Google Scholar 

  21. Gonzalez JM, Ofori E, Burd I, Chai J, Scholler N, Elovitz MA. Maternal mortality from systemic illness: unraveling the contribution of the immune response. Am J Obstet Gynecol. 2009;200(4): 430.e431–e438.

    Article  CAS  Google Scholar 

  22. Elovitz MA, Mrinalini C. Can medroxyprogesterone acetate alter Toll-like receptor expression in a mouse model of intrauterine inflammation? Am J Obstet Gynecol. 2005;193(3 Pt 2): 1149–1155.

    Article  CAS  PubMed  Google Scholar 

  23. Elovitz MA, Wang Z, Chien EK, Rychlik DF, Phillippe M. A new model for inflammation-induced preterm birth: the role of platelet-activating factor and Toll-like receptor-4. Am J Pathol. 2003;163(5):2103–2111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Monnerie H, Le Roux PD. Glutamate receptor agonist kainate enhances primary dendrite number and length from immature mouse cortical neurons in vitro. J Neurosci Res. 2006;83(6): 944–956.

    Article  CAS  PubMed  Google Scholar 

  25. Monnerie H, Le Roux PD. Reduced dendrite growth and altered glutamic acid decarboxylase (GAD) 65- and 67-kDa isoform protein expression from mouse cortical GABAergic neurons following excitotoxic injury in vitro. Exp Neurol. 2007;205(2):367–382.

    Article  CAS  PubMed  Google Scholar 

  26. Monnerie H, Shashidhara S, Le Roux PD. Effect of excess extracellular glutamate on dendrite growth from cerebral cortical neurons at 3 days in vitro: involvement of NMDA receptors. J Neurosci Res. 2003;74(5):688–700.

    Article  CAS  PubMed  Google Scholar 

  27. Coronas V, Arnault P, Roger M. Cortical diffusible factors increase MAP-2 immunoreactive neuronal population in thalamic cultures. Neurosci Res. 2002;43(1):57–67.

    Article  CAS  PubMed  Google Scholar 

  28. Benitez-King G, Ramirez-Rodriguez G, Ortiz L, Meza I. The neuronal cytoskeleton as a potential therapeutic target in neurodegenerative diseases and schizophrenia. Curr Drug Targets CNS Neurol Disord. 2004;3(6):515–533.

    Article  CAS  PubMed  Google Scholar 

  29. Whitford KL, Dijkhuizen P, Polleux F, Ghosh A. Molecular control of cortical dendrite development. Annu Rev Neurosci. 2002; 25:127–149.

    Article  CAS  PubMed  Google Scholar 

  30. Whitford KL, Marillat V, Stein E, et al. Regulation of cortical dendrite development by Slit-Robo interactions. Neuron. 2002; 33(1):47–61.

    Article  CAS  PubMed  Google Scholar 

  31. Holgado A, Ferreira A. Synapse formation proceeds independently of dendritic elongation in cultured hippocampal neurons. J Neurobiol. 2000;43(2):121–131.

    Article  CAS  PubMed  Google Scholar 

  32. Martone ME, Hu BR, Ellisman MH. Alterations of hippocampal postsynaptic densities following transient ischemia. Hippocampus. 2000;10(5):610–616.

    Article  CAS  PubMed  Google Scholar 

  33. Kishi N, Macklis JD. MeCP2 functions largely cell-autonomously, but also non-cell-autonomously, in neuronal maturation and dendritic arborization of cortical pyramidal neurons. Exp Neurol. 2010;222(1):51–58.

    Article  CAS  PubMed  Google Scholar 

  34. Fatemi SH. The role of Reelin in pathology of autism. Mol Psychiatry. 2002;7(9):919–920.

    Article  CAS  PubMed  Google Scholar 

  35. Abuhatzira L, Shemer R, Razin A. MeCP2 involvement in the regulation of neuronal alpha-tubulin production. Hum Mol Genet. 2009;18(8):1415–1423.

    Article  CAS  PubMed  Google Scholar 

  36. Rousset CI, Chalon S, Cantagrel S, et al. Maternal exposure to LPS induces hypomyelination in the internal capsule and programmed cell death in the deep gray matter in newborn rats. Pediatr Res. 2006;59(3):428–433.

    Article  CAS  PubMed  Google Scholar 

  37. Wang X, Hagberg H, Zhu C, Jacobsson B, Mallard C. Effects of intrauterine inflammation on the developing mouse brain. Brain Res. 2007;1144:180–185.

    Article  CAS  PubMed  Google Scholar 

  38. Cai Z, Pan ZL, Pang Y, Evans OB, Rhodes PG. Cytokine induction in fetal rat brains and brain injury in neonatal rats after maternal lipopolysaccharide administration. Pediatr Res. 2000;47(1): 64–72.

    Article  CAS  PubMed  Google Scholar 

  39. Saadani-Makki F, Kannan S, Lu X, et al. Intrauterine administration of endotoxin leads to motor deficits in a rabbit model: a link between prenatal infection and cerebral palsy. Am J Obstet Gynecol. 2008;199(6):651.e651–e657.

    Article  CAS  Google Scholar 

  40. Wang X, Rousset CI, Hagberg H, Mallard C. Lipopolysaccharideinduced inflammation and perinatal brain injury. Semin Fetal Neonatal Med. 2006;11(5):343–353.

    Article  PubMed  Google Scholar 

  41. Marlow N, Wolke D, Bracewell MA, Samara M. Neurologic and developmental disability at six years of age after extremely preterm birth. N Engl J Med. 2005;352(1):9–19.

    Article  CAS  PubMed  Google Scholar 

  42. Anderson P, Doyle LW. Neurobehavioral outcomes of school-age children born extremely low birth weight or very preterm in the 1990s. JAMA. 2003;289(24):3264–3272.

    Article  PubMed  Google Scholar 

  43. Anderson PJ, Doyle LW. Cognitive and educational deficits in children born extremely preterm. Semin Perinatol. 2008;32(1):51–58.

    Article  PubMed  Google Scholar 

  44. Rademaker KJ, Uiterwaal CS, Beek FJ, et al. Neonatal cranial ultrasound versus MRI and neurodevelopmental outcome at school age in children born preterm. Arch Dis Child Fetal Neonatal Ed. 2005;90(6):F489–F493.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kuban KC, Allred EN, O’Shea TM, et al. Cranial ultrasound lesions in the NICU predict cerebral palsy at age 2 years in children born at extremely low gestational age. J Child Neurol. 2009;24(1):63–72.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burd, I., Brown, A., Gonzalez, J.M. et al. A Mouse Model of Term Chorioamnionitis Unraveling Causes of Adverse Neurological Outcomes. Reprod. Sci. 18, 900–907 (2011). https://doi.org/10.1177/1933719111398498

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719111398498

Keywords

Navigation