Skip to main content

Chorioamnionitis and Oxidative Stress: New Ideas from Experimental Models

  • Chapter
  • First Online:
Perinatal and Prenatal Disorders

Abstract

Chorioamnionitis is commonly associated with preterm labor and delivery. The infection in chorioamnionitis is mainly in the amniotic compartment. Chorioamnionitis is however a risk factor for adverse outcomes after preterm birth such as bronchopulmonary dysplasia, necrotizing enterocolitis, and injury to the brain’s white matter. In this chapter, we discuss the contribution of oxidative stress from chorioamnionitis to fetal organ injury.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Goldenberg RL, et al. Infection-related stillbirths. Lancet. 2010;375(9724):1482–90.

    Article  PubMed Central  PubMed  Google Scholar 

  2. Tita AT, Andrews WW. Diagnosis and management of clinical chorioamnionitis. Clin Perinatol. 2010;37(2):339–54.

    Article  PubMed Central  PubMed  Google Scholar 

  3. DiGiulio DB, et al. Microbial prevalence, diversity and abundance in amniotic fluid during preterm labor: a molecular and culture-based investigation. PLoS One. 2008;3(8):e3056.

    Article  PubMed Central  PubMed  Google Scholar 

  4. Andrews WW, et al. The Alabama Preterm Birth study: polymorphonuclear and mononuclear cell placental infiltrations, other markers of inflammation, and outcomes in 23- to 32-week preterm newborn infants. Am J Obstet Gynecol. 2006;195(3):803–8.

    Article  CAS  PubMed  Google Scholar 

  5. Been JV, et al. Chorioamnionitis as a risk factor for necrotizing enterocolitis: a systematic review and meta-analysis. J Pediatr. 2013;162(2):236–42 e2.

    Article  PubMed  Google Scholar 

  6. Strunk T, et al. Histologic chorioamnionitis is associated with reduced risk of late-onset sepsis in preterm infants. Pediatrics. 2012;129(1):e134–41.

    Article  PubMed  Google Scholar 

  7. Viscardi RM. Ureaplasma species: role in diseases of prematurity. Clin Perinatol. 2010;37(2):393–409.

    Article  PubMed Central  PubMed  Google Scholar 

  8. Goldenberg RL, et al. The Alabama Preterm Birth Study: umbilical cord blood Ureaplasma urealyticum and Mycoplasma hominis cultures in very preterm newborn infants. Am J Obstet Gynecol. 2008;198(1):43 e1–5.

    Article  Google Scholar 

  9. Redline RW, et al. Amniotic infection syndrome: nosology and reproducibility of placental reaction patterns. Pediatr Dev Pathol. 2003;6(5):435–48.

    Article  PubMed  Google Scholar 

  10. Gomez R, et al. The fetal inflammatory response syndrome. Am J Obstet Gynecol. 1998;179:194–202.

    Article  CAS  PubMed  Google Scholar 

  11. Onderdonk AB, et al. Detection of bacteria in placental tissues obtained from extremely low gestational age neonates. Am J Obstet Gynecol. 2008;198(1):110 e1–7.

    Article  Google Scholar 

  12. Kemp MW, et al. Inflammation of the fetal ovine skin following in utero exposure to Ureaplasma parvum. Reprod Sci. 2011;18(11):1128–37.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Kemp MW, et al. Exposure to in utero lipopolysaccharide induces inflammation in the fetal ovine skin. Reprod Sci. 2011;18(1):88–98.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Kramer BW, et al. Modulation of fetal inflammatory response on exposure to lipopolysaccharide by chorioamnion, lung, or gut in sheep. Am J Obstet Gynecol. 2010;202(1):77 e1–9.

    Article  Google Scholar 

  15. Newnham JP, et al. The fetal maturational and inflammatory responses to different routes of endotoxin infusion in sheep. Am J Obstet Gynecol. 2002;186(5):1062–8.

    Article  CAS  PubMed  Google Scholar 

  16. Matsuda N, Hattori Y. Systemic inflammatory response syndrome (SIRS): molecular pathophysiology and gene therapy. J Pharmacol Sci. 2006;101(3):189–98.

    Article  CAS  PubMed  Google Scholar 

  17. Gotsch F, et al. The fetal inflammatory response syndrome. Clin Obstet Gynecol. 2007;50(3):652–83.

    Article  PubMed  Google Scholar 

  18. Goldenberg RL, Hauth JC, Andrews WW. Intrauterine infection and preterm delivery. N Engl J Med. 2000;342(20):1500–7.

    Article  CAS  PubMed  Google Scholar 

  19. Kim MJ, et al. Widespread microbial invasion of the chorioamniotic membranes is a consequence and not a cause of intra-amniotic infection. Lab Invest. 2009;89(8):924–36.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Grigsby PL, et al. Choriodecidual inflammation: a harbinger of the preterm labor syndrome. Reprod Sci. 2010;17(1):85–94.

    Article  CAS  PubMed  Google Scholar 

  21. Adams Waldorf KM, et al. Choriodecidual group B streptococcal inoculation induces fetal lung injury without intra-amniotic infection and preterm labor in Macaca nemestrina. PLoS One. 2011;6(12):e28972.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Hirsch E, Saotome I, Hirsh D. A model of intrauterine infection and preterm delivery in mice. Am J Obstet Gynecol. 1995;172(5):1598–603.

    Article  CAS  PubMed  Google Scholar 

  23. Elovitz MA, et al. Intrauterine inflammation, insufficient to induce parturition, still evokes fetal and neonatal brain injury. Int J Dev Neurosci. 2011;29(6):663–71.

    Article  PubMed Central  PubMed  Google Scholar 

  24. Davies JK, et al. Histologic inflammation in the maternal and fetal compartments in a rabbit model of acute intra-amniotic infection. Am J Obstet Gynecol. 2000;183(5):1088–93.

    Article  CAS  PubMed  Google Scholar 

  25. Kannan S, et al. Microglial activation in perinatal rabbit brain induced by intrauterine inflammation: detection with 11C-(R)-PK11195 and small-animal PET. J Nucl Med. 2007;48(6):946–54.

    Article  CAS  PubMed  Google Scholar 

  26. Yoon BH, et al. Experimentally induced intrauterine infection causes fetal brain white matter lesions in rabbits. Am J Obstet Gynecol. 1997;177(4):797–802.

    Article  CAS  PubMed  Google Scholar 

  27. Willet KE, et al. Intra-amniotic injection of IL-1 induces inflammation and maturation in fetal sheep lung. Am J Physiol Lung Cell Mol Physiol. 2002;282:L411–20.

    CAS  PubMed  Google Scholar 

  28. Jobe AH, et al. Effects of antenatal endotoxin and glucocorticoids on the lungs of preterm lambs. Am J Obstet Gynecol. 2000;182:401–8.

    Article  CAS  PubMed  Google Scholar 

  29. Moss TJ, et al. Intrauterine Ureaplasma infection accelerates fetal lung maturation and causes growth restriction in sheep. Am J Obstet Gynecol. 2005;192:1179–86.

    Article  PubMed  Google Scholar 

  30. Gravett MG, et al. Fetal and maternal endocrine responses to experimental intrauterine infection in rhesus monkeys. Am J Obstet Gynecol. 1996;174(6):1725–31; discussion 1731–3.

    Article  CAS  PubMed  Google Scholar 

  31. Novy MJ, et al. Ureaplasma parvum or Mycoplasma hominis as sole pathogens cause chorioamnionitis, preterm delivery, and fetal pneumonia in rhesus macaques. Reprod Sci. 2009;16(1):56–70.

    Article  CAS  PubMed  Google Scholar 

  32. Sadowsky DW, et al. Preterm labor is induced by intraamniotic infusions of interleukin-1beta and tumor necrosis factor-alpha but not by interleukin-6 or interleukin-8 in a nonhuman primate model. Am J Obstet Gynecol. 2006;195(6):1578–89.

    Article  CAS  PubMed  Google Scholar 

  33. Kallapur SG, et al. Intra-amniotic IL-1ß induces fetal inflammation in rhesus monkeys and alters the regulatory T cell/IL-17 balance. J Immunol. 2013;191:1102–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Nathan C, Cunningham-Bussel A. Beyond oxidative stress: an immunologist’s guide to reactive oxygen species. Nat Rev Immunol. 2013;13(5):349–61.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Buonocore G, Perrone S, Tataranno ML. Oxygen toxicity: chemistry and biology of reactive oxygen species. Semin Fetal Neonatal Med. 2010;15(4):186–90.

    Article  PubMed  Google Scholar 

  36. Bae YS, et al. Regulation of reactive oxygen species generation in cell signaling. Mol Cells. 2011;32(6):491–509.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Sbarra AJ, Karnovsky ML. The biochemical basis of phagocytosis. I. Metabolic changes during the ingestion of particles by polymorphonuclear leukocytes. J Biol Chem. 1959;234(6):1355–62.

    CAS  PubMed  Google Scholar 

  38. Roos D, et al. Hematologically important mutations: X-linked chronic granulomatous disease (third update). Blood Cells Mol Dis. 2010;45(3):246–65.

    Article  CAS  PubMed  Google Scholar 

  39. Zhou R, et al. A role for mitochondria in NLRP3 inflammasome activation. Nature. 2011;469(7329):221–5.

    Article  CAS  PubMed  Google Scholar 

  40. Singh DK, et al. The strength of receptor signaling is centrally controlled through a cooperative loop between Ca2+ and an oxidant signal. Cell. 2005;121(2):281–93.

    Article  CAS  PubMed  Google Scholar 

  41. Davis JM, Auten RL. Maturation of the antioxidant system and the effects on preterm birth. Semin Fetal Neonatal Med. 2010;15(4):191–5.

    Article  PubMed  Google Scholar 

  42. Sosenko IR, Nielsen HC, Frank L. Lack of sex differences in antioxidant enzyme development in the fetal rabbit lung. Pediatr Res. 1989;26(1):16–9.

    Article  CAS  PubMed  Google Scholar 

  43. Frank L, Groseclose EE. Preparation for birth into an O2-rich environment: the antioxidant enzymes in the developing rabbit lung. Pediatr Res. 1984;18(3):240–4.

    Article  CAS  PubMed  Google Scholar 

  44. Matalon S, et al. Characterization of antioxidant activities of pulmonary surfactant mixtures. Biochim Biophys Acta. 1990;1035(2):121–7.

    Article  CAS  PubMed  Google Scholar 

  45. Than NG, et al. Mitochondrial manganese superoxide dismutase mRNA expression in human chorioamniotic membranes and its association with labor, inflammation, and infection. J Matern Fetal Neonatal Med. 2009;22(11):1000–13.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Walther FJ, Jobe AH, Ikegami M. Repetitive prenatal glucocorticoid therapy reduces oxidative stress in the lungs of preterm lambs. J Appl Physiol. 1998;85(1):273–8.

    CAS  PubMed  Google Scholar 

  47. Been JV, et al. Antenatal steroids and neonatal outcome after chorioamnionitis: a meta-analysis. BJOG. 2011;118(2):113–22.

    Article  CAS  PubMed  Google Scholar 

  48. Wolfs TG, et al. Endotoxin induced chorioamnionitis prevents intestinal development during gestation in fetal sheep. PLoS One. 2009;4(6):e5837.

    Article  PubMed Central  PubMed  Google Scholar 

  49. Nitsos I, et al. Chronic exposure to intra-amniotic lipopolysaccharide affects the ovine fetal brain. J Soc Gynecol Investig. 2006;13(4):239–47.

    Article  CAS  PubMed  Google Scholar 

  50. Gavilanes AW, et al. Chorioamnionitis induced by intraamniotic lipopolysaccharide resulted in an interval-dependent increase in central nervous system injury in the fetal sheep. Am J Obstet Gynecol. 2009;200(4):437 e1–8.

    Article  Google Scholar 

  51. Kuypers E, et al. Ovine fetal thymus response to lipopolysaccharide-induced chorioamnionitis and antenatal corticosteroids. PLoS One. 2012;7(5):e38257.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Wilson TC, et al. Pulmonary and systemic induction of SAA3 after ventilation and endotoxin in preterm lambs. Pediatr Res. 2005;58(6):1204–9.

    Article  CAS  PubMed  Google Scholar 

  53. Kramer BW, et al. Dose and time response for inflammation and lung maturation after intra-amniotic endotoxin in preterm lambs. Am J Respir Crit Care Med. 2001;164:982–8.

    Article  CAS  PubMed  Google Scholar 

  54. Kallapur SG, et al. Intra-amniotic endotoxin: chorioamnionitis precedes lung maturation in preterm lambs. Am J Physiol Lung Cell Mol Physiol. 2001;280(3):L527–36.

    CAS  PubMed  Google Scholar 

  55. Cheah FC, et al. Oxidative stress in fetal lambs exposed to intra-amniotic endotoxin in a chorioamnionitis model. Pediatr Res. 2008;63(3):274–9.

    Article  CAS  PubMed  Google Scholar 

  56. Sosenko IR, Jobe AH. Intraamniotic endotoxin increases lung antioxidant enzyme activity in preterm lambs. Pediatr Res. 2003;53(4):679–83.

    Article  CAS  PubMed  Google Scholar 

  57. Sosenko IR, et al. IL-1alpha causes lung inflammation and maturation by direct effects on preterm fetal lamb lungs. Pediatr Res. 2006;60(3):294–8.

    Article  CAS  PubMed  Google Scholar 

  58. Warner B, et al. Functional and pathological effects of prolonged hyperoxia in neonatal mice. Am J Physiol. 1998;275:L110–7.

    CAS  PubMed  Google Scholar 

  59. Willet KE, et al. Antenatal endotoxin and glucocorticoid effects on lung morphometry in preterm lambs. Pediatr Res. 2000;48:782–8.

    Article  CAS  PubMed  Google Scholar 

  60. Tang JR, et al. Moderate postnatal hyperoxia accelerates lung growth and attenuates pulmonary hypertension in infant rats after exposure to intra-amniotic endotoxin. Am J Physiol Lung Cell Mol Physiol. 2010;299(6):L735–48.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Frank L, et al. New “rest period” protocol for inducing tolerance to high O2 exposure in adult rats. Am J Physiol. 1989;257(4 Pt 1):L226–31.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boris W. Kramer M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kramer, B.W., Kallapur, S.G., Jobe, A.H. (2014). Chorioamnionitis and Oxidative Stress: New Ideas from Experimental Models. In: Dennery, P., Buonocore, G., Saugstad, O. (eds) Perinatal and Prenatal Disorders. Oxidative Stress in Applied Basic Research and Clinical Practice. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1405-0_2

Download citation

Publish with us

Policies and ethics