Skip to main content
Log in

Hemodynamic Analysis of Arterial Blood Flow in the Coiled Umbilical Cord

  • Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

The most significant anatomical structure of the umbilical cord is its level of coiling. The coiled geometry of the umbilical cord largely affects umbilical blood flow that is vital for fetus’s well-being and normal development. In this study, we developed a computational model of steady blood flow through the coiled structure of an umbilical artery. The results showed that the driving pressure for a given blood flow rate is increasing as the number of coils in cord structure increases. The driving gradient pressures also vary with the pitch that dictates the coils’ spreading. The coiled structure is resulting in interwoven streamlines along the helix and wall shear stresses (WSS) with significant spatial gradients along the cross-sectional perimeter anywhere within the helical coil. These gradients may have an adverse effect on the development of the fetus cardiovascular system in cases with over coiling (OC) or under coiling (UC) characteristics. The number of coils does not affect the distribution and levels of WSS. However, when the coils are more spread (eg, larger pitch number), the maximal WSS is significantly smaller. Cases with twisted and OC cords seem to yield very large values and gradients of WSS, which may place the fetus into high risk of abnormal development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. de Laat MW, Franx A, van Alderen ED, Nikkels PG, Visser GH. The umbilical coiling index, a review of the literature. J Matern Fetal Neonatal Med. 2005;17(2):93–100.

    Article  PubMed  Google Scholar 

  2. Strong TH Jr, Jarles DL, Vega JS, Feldman DB. The umbilical coiling index. Am J Obstet Gynecol. 1994;170(1 pt 1):29–32.

    Article  PubMed  Google Scholar 

  3. Machin GA, Ackerman J, Gilbert-Barness E. Abnormal umbilical coiling is associated with adverse perinatal outcomes. Pediatr Dev Pathol. 2000;3(5):462–471.

    Article  CAS  PubMed  Google Scholar 

  4. de Laat MW, van Alderen ED, Franx A, Visser GH, Bots ML, Nikkels PG. The umbilical coiling index in complicated pregnancies. Eur J Obstet Gynecol Reprod Biol. 2007;130(1):66–72.

    Article  PubMed  Google Scholar 

  5. Degani S, Lewinsky RM, Berger H, Spiegel D. Sonographic estimation of umbilical coiling index and correlation with Doppler flow characteristics. Obstet Gynecol. 1995;86(6): 990–993.

    Article  CAS  PubMed  Google Scholar 

  6. Peng HQ, Levitin-Smith M, Rochelson B, Kahn E. Umbilical cord stricture and overcoiling are common causes of fetal demise. Pediatr Dev Pathol. 2006;9(1):14–19.

    Article  PubMed  Google Scholar 

  7. Berger SA, Talbot L, Yao LS. Flow in curved pipes. Ann Rev Fluid Mech. 1983;15:461–512.

    Article  Google Scholar 

  8. Ali S. Pressure drop correlations for flow through regular helical coil tubes. Fluid Dyn Res. 2001;28(4):295–310.

    Article  Google Scholar 

  9. Yamamoto K, Alam MM, Yasuhara J, Aribowo A. Flow through a rotating helical pipe with circular cross-section. Int J Heat Fluid Flow. 2000;21(2):213–220.

    Article  Google Scholar 

  10. Kliener-Assaf A, Jaffa AJ, Elad D. Hemodynamic model for analysis of Doppler ultrasound indexes of umbilical blood flow. Am J Physiol. 1999;276(6 pt 2):H2204–H2214.

    Google Scholar 

  11. Gordon Z, Eytan O, Jaffa AJ, Elad D. Hemodynamic analysis of Hyrtl anastomosis in the human placenta. Am J Physiol Regul Integr Comp Physiol. 2007;292(2):R977–R982.

    Article  CAS  PubMed  Google Scholar 

  12. Sherer DM, Anyaegbunam A. Prenatal ultrasonographic morphologic assessment of the umbilical cord: a review. Part II. Obstet Gynecol Surv. 1997;52(8):515–523.

    Article  CAS  PubMed  Google Scholar 

  13. Kleinstreuer C. Biofluid Dynamics: Principles and Selected Applications. Boca Raton, FL: CRC Taylor & Francis; 2006.

    Book  Google Scholar 

  14. Acharya G, Wilsgaard T, Rosvold-Berntsen GK, Maltau JM, Kiserud T. Reference ranges for umbilical vein blood flow in the second half of pregnancy based on longitudinal data. Prenat Diagn. 2005;25(2):99–111.

    Article  PubMed  Google Scholar 

  15. Kiserud T. Physiology of the fetal circulation. Semin Fetal Neonatal Med. 2005;10(6):493–503.

    Article  PubMed  Google Scholar 

  16. Kaplan C. Twist and shout: the excitement over coils in the umbilical cord. Pediatr Dev Pathol. 2006;9(1):1–2.

    Article  PubMed  Google Scholar 

  17. Sebire NJ. Pathophysiological significance of abnormal umbilical cord coiling index (opinion). Ultrasound Obstet Gynecol. 2007;30(6):804–806.

    Article  CAS  PubMed  Google Scholar 

  18. Germano M. The Dean equation extended to helical pipe flow. J Fluid Mech. 1989;203:289–305.

    Article  Google Scholar 

  19. Cunningham KS, Gotlieb AI. The role of shear stress in the pathogenesis of atherosclerosis. Lab Invest. 2005;85(1):9–23.

    Article  CAS  PubMed  Google Scholar 

  20. Maalej N, Holden JE, Folts JD. Effect of shear stress on acute platelet thrombus formation in canine stenosed carotid arteries: an in vivo quantitative study. J Thrombosis Thrombolysis. 1998;5(3):231–238.

    Article  CAS  Google Scholar 

  21. Poelmann RE, Gittenberger-de Groot AC, Hierck BP. The development of the heart and microcirculation: role of shear stress. Med Biol Eng Comput. 2008;46(5):479–484.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Hove JR, Koster RW, Forouhar AS, Acevedo-Bolton G, Fraser SE, Gharib M. Intracardiac fluid forces are an essential epigenetic factor for embryonic cardiogenesis. Nature. 2003; 421(6919):172–177.

    Article  CAS  PubMed  Google Scholar 

  23. Strong TH, Elliot JP, Radin TG. Non-coiled umbilical blood vessels: a new marker for the fetus at risk. Obstet Gynecol. 1993; 81(3):409–411.

    PubMed  Google Scholar 

  24. Heifetz SA. Single umbilical artery. A statistical analysis of 237 autopsy cases and review of the literature. Perspect Pediatr Pathol. 1984;8(4):345–378.

    CAS  PubMed  Google Scholar 

  25. Kaplan CG. Color Atlas of Gross Placental Pathology. 2nd ed. chap. 3. New York: Springer; 2007.

    Google Scholar 

  26. Helmlinger G, Geiger RV, Schreck S, Nerem RM. Effects of pulsatile flow on cultured vascular endothelial cell morphology. J Biomech Eng. 1991;113(2):123–131.

    Article  CAS  PubMed  Google Scholar 

  27. Malek AM, Alper SL, Izumo S. Hemodynamic shear stress and its role in atherosclerosis. JAMA. 1999;282(21):2035–2042.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Elad DSc.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaplan, A.D., Jaffa, A.J., Timor, I.E. et al. Hemodynamic Analysis of Arterial Blood Flow in the Coiled Umbilical Cord. Reprod. Sci. 17, 258–268 (2010). https://doi.org/10.1177/1933719109351596

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719109351596

Key words

Navigation