Skip to main content

Advertisement

Log in

Placental Gene Expression Profile in Intrauterine Growth Restriction Due to Placental Insufficiency

  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

We evaluated global placental gene expression in intrauterine growth restriction (IUGR; n = 8) compared to normal pregnancies (n = 8) and studied possible additional effect of preeclampsia. Placental samples were collected from IUGR pregnancies due to placental insufficiency ascertained by hemodynamic studies. Four IUGR pregnancies were associated with preeclampsia. Gene expression profile was evaluated by 30k oligonucleotide microarrays. Principal component analysis (PCA) showed good separation in terms of gene expression patterns between the groups. Pathway analysis showed upregulation of inflammation mediated by chemokine and cytokine signaling pathway in the IUGR placentas. Genes involved in placental glucocorticoid metabolism were also differentially expressed. None of the known imprinted placental genes were differentially expressed. Subgroup analysis between IUGRplacentas with and without preeclampsia showed few (n = 27) differentially expressed genes. In conclusion, IUGR due to placental insufficiency appears to alter placental glucocorticoid metabolism, upregulates inflammatory response in placenta, and shares common pathogenic mechanisms with severe early-onset preeclampsia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Monk D, Moore GE. Intrauterine growth restriction-genetic causes and consequences. Semin Fetal Neonatal Med. 2004;9(5): 371–378.

    Article  PubMed  Google Scholar 

  2. Gluckman PD, Hanson MA, Cooper C, Thornburg KL. Effect of in utero and early-life conditions on adult health and disease. N Engl J Med. 2008;359(1):61–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Jansson T, Powell TL. Role of the placenta in fetal programming: underlying mechanisms and potential interventional approaches. Clin Sci (Lond). 2007;113(1):1–13.

    Article  CAS  Google Scholar 

  4. Sibley CP, Turner MA, Cetin I, et al. Placental phenotypes of intrauterine growth. Pediatr Res. 2005;58(5):827–832.

    Article  PubMed  Google Scholar 

  5. McMinn J, Wei M, Schupf N, et al. Unbalanced placental expression of imprinted genes in human intrauterine growth restriction. Placenta. 2006;27(6–7):540–549.

    Article  CAS  PubMed  Google Scholar 

  6. Okamoto A, Endo H, Kalionis B, et al. IGFBP1 and Follista-tin-like 3 genes are significantly up-regulated in expression profiles of the IUGR placenta. Placenta. 2006;27(2–3): 317–321.

    Article  CAS  PubMed  Google Scholar 

  7. Buffat C, Mondon F, Rigourd V, et al. A hierarchical analysis of transcriptome alterations in intrauterine growth restriction (IUGR) reveals common pathophysiological pathways in mammals. J Pathol. 2007;213(3):337–346.

    Article  CAS  PubMed  Google Scholar 

  8. Skjaerven R, Gjessing HK, Bakketeig LS. Birthweight by gestational age in Norway. Acta Obstet Gynecol Scand. 2000;79(6):440–449.

    Article  CAS  PubMed  Google Scholar 

  9. Phelan JP, Ahn MO, Smith CV, Rutherford SE, Anderson E. Amniotic fluid index measurements during pregnancy. J Reprod Med. 1987;32(8):601–604.

    CAS  PubMed  Google Scholar 

  10. Sood R, Zehnder JL, Druzin ML, Brown PO. Gene expression patterns in human placenta. PNAS. 2006;103(14): 5478–5483.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Paulssen RH, Olsen L, Sogn TC. MagNA Pure compact RNA isolation kit: isolation of high-quality total RNA from a broad range of sample material. Biochemica. 2006;2(12):14–16.

    Google Scholar 

  12. Dysvik B, Jonassen I. J-Express: exploring gene expression data using Java. Bioinformatics. 2001;17(4):369–370.

    Article  CAS  PubMed  Google Scholar 

  13. Cleveland JS. Robust locally weighted regression and smoothing scatterplots. J Amer Stat Assoc. 1979;74(368):829–836.

    Article  Google Scholar 

  14. Bo TH, Dysvik B, Jonassen I. LSimpute: accurate estimation of missing values in microarray data with least squares methods. Nucleic Acids Res. 2004;32(3):e34.

    Article  CAS  Google Scholar 

  15. Tusher VG, Tibshirani R, Chu G. Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci U S A. 2001;98(9):5116–5121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mi H, Guo N, Kejariwal A, Thomas PD. PANTHER version 6: protein sequence and function evolution data with expanded representation of biological pathways. Nucl Acids Res. 2007;35(Database issue):247–252.

    Article  Google Scholar 

  17. Brazma A, Hingamp P, Quackenbush J, et al. Minimum information about a microarray experiment (MIAME)-toward standards for microarray data. Nat Genet. 2001;29(4):365–371.

    Article  CAS  PubMed  Google Scholar 

  18. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2-[Delta][Del-ta]CT Method. Methods. 2001;25(4):402–408.

    Article  CAS  PubMed  Google Scholar 

  19. Jain K, Kavi V, Raghuveer CV, Sinha R. Placental pathology in pregnancy-induced hypertension (PIH) with or without intrauterine growth retardation. Indian J Pathol Microbiol. 2007;50(3):533–537.

    PubMed  Google Scholar 

  20. Laskowska M, Laskowska K, Leszczya¨ska-Gorzelak B, Oleszczuk J. Comparative analysis of the maternal and umbilical interleukin–8 levels in normal pregnancies and in pregnancies complicated by preeclampsia with intrauterine normal growth and intrauterine growth retardation. J Matern Fetal Neonatal Med. 2007;20(7):527–532.

    Article  CAS  PubMed  Google Scholar 

  21. Bartha JL, Romero-Carmona R, Comino-Delgado R. Inflammatory cytokines in intrauterine growth retardation. Acta Obstet Gynecol Scand. 2003;82:1099–1102.

    Article  PubMed  Google Scholar 

  22. Holcberg G, Huleihel M, Sapir O, et al. Increased production of tumor necrosis factor-alpha TNF-alpha by IUGR human placentae. Eur J Obstet Gynecol Reprod Biol. 2001;94:69–72.

    Article  CAS  PubMed  Google Scholar 

  23. de Kossodo S, Grau GE, Daneva T, et al. Tumor necrosis factor alpha is involved in mouse growth and lymphoid tissue development. J Exp Med. 1992;176:1259–1264.

    Article  PubMed  Google Scholar 

  24. Boog G. Chronic villitis of unknown etiology. European Journal of Obstetrics & Gynecology and Reproductive Biology 2008;136:9–15.

  25. Seckl JR, Walker BR. Minireview: 11beta-hydroxysteroid dehydrogenase type 1- a tissue-specific amplifier of glucocor-ticoid action. Endocrinology. 2001;142:1371–1376.

    Article  CAS  PubMed  Google Scholar 

  26. Pepe GJ, Burch MG, Albrecht ED. Expression of the 11beta-hydroxysteroid dehydrogenase types 1 and 2 proteins in human and baboon placental syncytiotrophoblast. Placenta. 1999;20:575–582.

    Article  CAS  PubMed  Google Scholar 

  27. Speirs HJ, Seckl JR, Brown RW. Ontogeny of glucocorticoid receptor and 11beta-hydroxysteroid dehydrogenase type–1 gene expression identifies potential critical periods of gluco-corticoid susceptibility during development. J Endocrinol. 2004;181:105–116.

    Article  CAS  PubMed  Google Scholar 

  28. Dave-Sharma S, Wilson RC, Harbison MD, et al. Examination of genotype and phenotype relationships in 14 patients with apparent mineralocorticoid excess. J Clin Endocrinol Metab. 1998;83:2244–2254.

    CAS  PubMed  Google Scholar 

  29. Seckl JR. Glucocorticoid programming of the fetus; adult phenotypes and molecular mechanisms. Mol Cell Endocrinol. 2001;185:61–71.

    Article  CAS  PubMed  Google Scholar 

  30. Baisden B, Sonne S, Joshi RM, et al. Antenatal dexametha-sone treatment leads to changes in gene expression in a murine late placenta. Placenta. 2007;28:1082–1090.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ferguson-Smith AC, Moore T, Detmar J, et al. Epigenetics and imprinting of the trophoblast—a workshop report. Placenta. 2006;27:122–126.

    Article  Google Scholar 

  32. Holmes R, Montemagno R, Jones J, et al. Fetal and maternal plasma insulin-like growth factors and binding proteins in pregnancies with appropriate or retarded fetal growth. Early Human Development. 1997;49:7–17.

    Article  CAS  PubMed  Google Scholar 

  33. Holmes DIR, Zachary I. Placental growth factor induces FosB and c-Fos gene expression via Flt–1 receptors. FEBS Letters. 2004;557:93–98.

    Article  CAS  PubMed  Google Scholar 

  34. Faxen M, Nasiell J, Lunell NO, Blanck A. Differences in mRNA expression of endothelin–1, c-fos and c-jun in placentas from normal pregnancies and pregnancies complicated with preeclampsia and/or intrauterine growth retardation. Gynecol Obstet Invest. 1997;44:93–96.

    Article  CAS  PubMed  Google Scholar 

  35. Burger O, Pick E, Zwickel J, et al. Placental protein 13 (PP-13): effects on cultured trophoblasts, and its detection in human body fluids in normal and pathological pregnancies. Placenta. 2004;25:608–622.

    Article  CAS  PubMed  Google Scholar 

  36. Yu Y, Hao Y, Feig LA. The R-Ras GTPase mediates cross talk between estrogen and insulin signaling in breast cancer cells. Mol Cell Biol. 2006;26:6372–6380.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Du M, Zhu MJ, Means WJ, Hess BW, Ford SP. Nutrient restriction differentially modulates the mammalian target of rapamycin signaling and the ubiquitin-proteasome system in skeletal muscle of cows and their fetuses. J Anim Sci. 2005;83:117–123.

    Article  CAS  PubMed  Google Scholar 

  38. Regnault TR, Friedman JE, Wilkening RB, Anthony RV, Hay WW Jr. Fetoplacental transport and utilization of amino acids in IUGR-a review. Placenta. 2005;26:52–62.

    Article  CAS  Google Scholar 

  39. Sitras V, Paulssen RH, Grønaas H, et al. Differential placental gene expression in severe preeclampsia. Placenta. 2009. DOI: 10.1016/j.placenta.2009.01.012. IN PRESS.

    Article  CAS  PubMed  Google Scholar 

  40. Myatt L. Placental adaptive responses and fetal programming. J Physiol. 2006;572:25–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ness RB, Sibai BM. Shared and disparate components of the pathophysiologies of fetal growth restriction and preeclampsia. Am J Obstet Gynecol. 2006;195:40–49.

    Article  PubMed  Google Scholar 

  42. Egbor M, Ansari T, Morris N, Green CJ, Sibbons PD. Pre-eclampsia and fetal growth restriction: how morphometrically different is the placenta? Placenta. 2006;27:727–734.

    Article  CAS  PubMed  Google Scholar 

  43. Teasdale F. Histomorphometry of the human placenta in pre-eclampsia associated with severe intrauterine growth retardation. Placenta. 1987;8:119–128.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vasilis Sitras MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sitras, V., Paulssen, R., Leirvik, J. et al. Placental Gene Expression Profile in Intrauterine Growth Restriction Due to Placental Insufficiency. Reprod. Sci. 16, 701–711 (2009). https://doi.org/10.1177/1933719109334256

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719109334256

Key words

Navigation