Skip to main content
Log in

Uterine Electromyography and Light-Induced Fluorescence in the Management of Term and Preterm Labor

  • Review Article
  • Published:
The Journal of the Society for Gynecologic Investigation: JSGI Aims and scope Submit manuscript

Abstract

Objective

Understanding the physiology of the uterus and cervix during term and preterm parturition is crucial for developing methods to control their function and is essential to solving clinical problems related to labor. To date, only crude, inaccurate, and subjective methods are used to assess changes in uterine and cervical function in pregnancy.

Methods

In the past several years, we have developed noninvasive methods to quantitatively evaluate the uterus and cervix based on recording of uterine electrical signals from the abdominal surface (uterine electromyography) and measurement of light-induced fluorescence (LIF) of cervical collagen (Collascope), respectively. Both methods are rapid and allow immediate assessment of uterine contractility and cervical ripening.

Results

Studies in animals and humans indicated that uterine and cervical performance can be monitored successfully during pregnancy using those approaches and that these techniques can be used during labor to better define management in a variety of conditions associated with labor.

Conclusions

The potential benefits of the proposed instrumentation and methods include reducing the rate of preterm delivery, improving maternal and perinatal outcome, monitoring treatment, decreasing cesarean rate and providing research methods to understand uterine and cervical function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Norwitz ER, Robinson J, Challis JRG. The control of labor. N Engl J Med 1999;341:660–6.

    Article  CAS  PubMed  Google Scholar 

  2. U.S. Preventive Services Task Force. Guide to clinical preventive services: An assessment of the effectiveness of 169 interventions. Baltimore: Williams & Wilkins, 1989.

  3. Ventura SJ, Martin JA, Curtin SC, Matthews TH. Report of final natality statistics. Monthly Vital Stat Rep 1997;45:12.

  4. Brown ER, Epstein M. Immediate consequences of preterm birth. In: Fuchs F, Stubblefield PG, eds. Preterm birth: Causes, prevention, and management. New York: Macmillan Publishing, 1984:323–54.

    Google Scholar 

  5. Goldenberg RL, Cliver SP, Bronstein J, Cutter GR, Andrews WW, Mennemeyer ST. Bed rest in pregnancy. Obstet Gynecol 1994;84:131–6.

    CAS  PubMed  Google Scholar 

  6. Mou SM, Sunderji SG, Gall S, et al. Multicenter randomized clinical trial of home uterine activity monitoring for detection of preterm labor. Am J Obstet Gynecol 1991;165:858–66.

    Article  CAS  PubMed  Google Scholar 

  7. Wapner RJ, Cotton DB, Artal R, Librizzi RJ, Ross MG. A randomized multicenter trial assessing a home uterine activity monitoring device used in the absence of daily nursing contact. Am J Obstet Gynecol 1995;172:1026–34.

    Article  CAS  PubMed  Google Scholar 

  8. The Collaborative Home Uterine Monitoring Study Group. A multicenter randomized controlled trial of home uterine monitoring: Active vs sham device. Am J Obstet Gynecol 1995;173:1117-20.

  9. Dyson DC, Dange KH, Bamber JA, et al. Monitoring women at risk for preterm labor. N Engl J Med 1998;338:15–9.

    Article  CAS  PubMed  Google Scholar 

  10. Andersen HF, Nugent CE, Wanty SD, Hayashi RH. Prediction of risk for preterm delivery by ultrasonographic measurement of cervical length. Am J Obstet Gynecol 1990;163:859–67.

    Article  CAS  PubMed  Google Scholar 

  11. Guzman ER, Houlihan C, Vintzileos A. Sonography and trans-fundal pressure in the evaluation of the cervix during pregnancy. Obstet Gynecol Survey 1995;50:395–403.

    Article  CAS  Google Scholar 

  12. Chung TKH, Haines CJ, Kong D, Woo WK, Rogers MS. Transvaginal sonography in the diagnosis and management of cervical incompetence. Gynecol Obstet Invest 1993;36:59–61.

    Article  CAS  PubMed  Google Scholar 

  13. Iams JD, Goldenberg RL, Meis PJ, et al. The length of the cervix and the risk of spontaneous premature delivery. N Engl J Med 1996;334:567–72.

    Article  CAS  PubMed  Google Scholar 

  14. Cook CM, Ellwood DA. A longitudinal study of the cervix in pregnancy using transvaginal ultrasound. Br J Obstet Gynecol 1996;103:16–8.

    Article  CAS  Google Scholar 

  15. Iams JD, Paraskos J, Landon MB, Teteris JN, Johnson FF. Cervical sonography in preterm labor. Obstet Gynecol 1994;84:40–6.

    CAS  PubMed  Google Scholar 

  16. Lockwood CJ, Wein R, Lapinksi R, et al. The presence of cervical and vaginal fetal fibronectin predicts preterm delivery in an inner-city obstetric population. Am J Obstet Gynecol 1993;169:798–804.

    Article  CAS  PubMed  Google Scholar 

  17. Nageotte MP, Casal D, Senyei AE. Fetal fibronectic in patients at increased risk for premature birth. Am J Obstet Gynecol 1994;170:20–5.

    Article  CAS  PubMed  Google Scholar 

  18. Lockwood CJ, Moscarelli RD, Wein R, Lynch L, Lapinski RH, Ghidini A. Low concentrations of vaginal fetal fibronectin as a predictor of deliveries occurring after 41 weeks. Am J Obstet Gynecol 1994;171:1–4.

    Article  CAS  PubMed  Google Scholar 

  19. Hellemans P, Gerris J, Verdonk P. Fetal fibronectin detection for prediction of preterm birth in low risk women. Br J Obstet Gynecol 1995;102:207–12.

    Article  CAS  Google Scholar 

  20. Iams JD, Casal D, McGregor JA, et al. Fetal fibronectin improves the accuracy of diagnosis of preterm labor. Am J Obstet Gynecol 1995;173:141–5.

    Article  CAS  PubMed  Google Scholar 

  21. McGregor JA, Jackson GM, Lachelin GC, et al. Salivary estriol as risk assessment for preterm labor: A prospective trial. Am J Obstet Gynecol 1995;173:1337–42.

    Article  CAS  PubMed  Google Scholar 

  22. Copper RL, Goldenberg RL, Dubard MB, Hauth JC, Cutter GR. Cervical examination and tocodynamometry at 28 weeks’ gestation: Prediction of spontaneous preterm birth. Am J Obstet Gynecol 1995;172:666–71.

    Article  CAS  PubMed  Google Scholar 

  23. Heine RP, McGregor JA, Goodwin TM, et al. Serial salivary estriol to detect an increased risk of preterm birth. Obstet Gynecol 2000;96:490–7.

    CAS  PubMed  Google Scholar 

  24. Kuriyama H. Recent studies of the electrophysiology of the uterus. In: Ciba Foundation Study Group Vol. 9. Progesterone and the defence mechanism of pregnancy. Boston: Little Brown 1961:51–70.

  25. Csapo AL Smooth muscle as a contractile unit. Physiol Rev 1962;42:7–33.

  26. Marshall JM. Regulation of activity in uterine smooth muscle. Physiol Rev 1962;42:213–27.

    Google Scholar 

  27. Okawa H. Electrical and mechanical interaction between the muscle layers of rat uterus and different sensitivities to oxytocin. Bull Yamaguchi Med School 1975;22:197–210.

    Google Scholar 

  28. Kuriyama H, Suzuki H. Changes in electrical properties of rat myometrium during gestation and following hormonal treatments. J Physiol Lond 1976;260:315–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kanda S, Kuriyama H. Specific features of smooth muscle cells recorded from the placental region of the myometrium of pregnant rats. J Physiol Lond 1980;299:127–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Osa T, Fujino T. Electrophysiological comparison between the longitudinal and circular muscles of the rat uterus during the estrous cycle and pregnancy. Jpn J Physiol 1978;23:197–209.

    Article  Google Scholar 

  31. Osa T, Ogasawara T, Kato S. Effects of magnesium, oxytocin and prostaglandin F2 on the generation and propagation of excitation in the longitudinal muscle of rat myometrium during late pregnancy. Jpn J Physiol 1983;33:51–67.

    Article  CAS  PubMed  Google Scholar 

  32. Bengtsson B, Chow EMH, Marshall JM. Activity of circular muscle of rat uterus at different times in pregnancy. Am J Physiol 1984;246:C216–C223.

    Article  CAS  Google Scholar 

  33. Kawarabayashi T, Marshall JM. Factors influencing circular muscle activity in the pregnant rat uterus. Biol Reprod 1981;24:373–9.

    Article  CAS  PubMed  Google Scholar 

  34. Anderson GF, Kawarabayashi T, Marshall JM. Effect of indomethacin and aspirin on uterine activity in pregnant rats: Comparison of circular and longitudinal muscle. Biol Reprod 1981;24:359–72.

    Article  CAS  PubMed  Google Scholar 

  35. Marshall JM. Effects of estrogen and progesterone on single uterine muscle fibers in the rat. Am J Physiol 1959;197:935–42.

    Article  CAS  PubMed  Google Scholar 

  36. Honnebier MB, Wentworth RA, Figueroa JP, Nathanielsz PW. Temporal structuring of delivery in the absence of a photoperiod: Preparturient myometrial activity of the rhesus monkey is related to maternal body temperature and depends on the maternal circadian system. Biol Reprod 1991;45:617–25.

    Article  CAS  PubMed  Google Scholar 

  37. Taverne MAM, Scheerboom J. Myometrial electrical activity during pregnancy and parturition in the pigmy goat. Res Vet Sci 1985;38:120–3.

    Article  CAS  PubMed  Google Scholar 

  38. Ducsay CA, McNutt CM. Circadian uterine activity in the pregnant rhesus macaque: Do prostaglandins play a role? Biol Reprod 1989;40:988–93.

    Article  CAS  PubMed  Google Scholar 

  39. Nathanielsz PW, Bayley A, Poore ER, Thorburn GD, Harding R. The relationship between myometrial activity and sleep state and breathing in fetal sheep throughout the last third of gestation. Am J Obstet Gynecol 1980;138:653–9.

    Article  CAS  PubMed  Google Scholar 

  40. Sureau C, Chavinie J, Cannon M. L’electrophysiologie uterine. Bull Fed Soc Gynecol Obstet 1965;17:79–140.

    Google Scholar 

  41. Demianczuk N, Towell ME, Garfield RE. Myometrial electrophysiologic activity and gap junctions in the pregnant rabbit. Am J Obstet Gynecol 1984;149:485–91.

    Article  CAS  PubMed  Google Scholar 

  42. Verhoeff A, Garfield RE, Ramondt J, Wallenburg HC. Myometrial activity related to gap junction area in periparturient and in ovariectomized estrogen treated sheep. Acta Physiol Hung 1986;67:117–29.

    CAS  PubMed  Google Scholar 

  43. Figueroa JP, Mahan S, Poore ER, Nathanielsz PW. Characteristics and analysis of uterine electromyographic activity in the pregnant sheep. Am J Obstet Gynecol 1985;151:524–31.

    Article  CAS  PubMed  Google Scholar 

  44. Sureau C. Etude de l’activité électrique de l’utérus au cours du travail. Gynecol Obstet 1956;555:153–75.

    Google Scholar 

  45. Wolfs GMJA, van Leeuwen M. Electromyographic observations on the human uterus during labor. Acta Obstet Gynecol Scand 1979;90(Suppl):1–62.

    Article  Google Scholar 

  46. Wolfs GMJA, Rottinghuis H. Electrical and mechanical activity of the human uterus during labour. Arch Gynaekol 1970;208:373–85.

    Article  CAS  Google Scholar 

  47. Lopes P, Germain G, Breart G, Reinatin S, Le Houezec R, Sureau C. Electromyographical study of uterine activity in the human during labor induced by prostaglandin. Gynecol Obstet Invest 1984;17:96–105.

    Article  CAS  PubMed  Google Scholar 

  48. Csapo A, Takeda H. Electrical activity of the parturient human uterus. Nature 1963;200:68.

    Article  CAS  PubMed  Google Scholar 

  49. Csapo AL Force of labour. In: Iffy L, Kamientzky HA, eds. Principles and practice of obstetrics and perinatology. New York: John Wiley and Sons, 1981:761–99.

  50. Csapo A, Sauvage J. The evolution of uterine activity during human pregnancy. Acta Obstet Gynecol Scand 1968;47:181–212.

    Article  CAS  PubMed  Google Scholar 

  51. Buhimschi C, Garfield RE. Uterine contractility as assessed by abdominal surface recording of EMG activity in rats during pregnancy. Am J Obstet Gynecol 1996;174:744–53.

    Article  CAS  PubMed  Google Scholar 

  52. Buhimschi C, Boyle MB, Garfield RE. Electrical activity of the human uterus during pregnancy as recorded from the abdominal surface. Obstet Gynecol 1997;90:102–11.

    Article  CAS  PubMed  Google Scholar 

  53. Buhimschi C, Boyle MB, Saade GR, Garfield RE. Uterine activity during pregnancy and labor assessed by simultaneous recordings from the myometrium and abdominal surface in the rat. Am J Obstet Gynecol 1998;178:811–22.

    Article  CAS  PubMed  Google Scholar 

  54. Duchene J, Devedeux D, Mansour S, Marque C. Analyzing uterine EMG: Tracking instantaneous burst frequency. IEEE Eng Med Biol 1995;14:125–32.

    Article  Google Scholar 

  55. Marque C, Duchene J, Lectercq S, Panczer G, Chaumont J. Uterine EMG processing for obstetrical monitoring. IEEE Trans Biomed Eng 1986;33:1182–7.

    Article  CAS  PubMed  Google Scholar 

  56. Garfield RE, Yallampalli C. Structure and function of uterine muscle. In: Chard T, Grudzinskas JG, eds. The uterus. Cambridge Reviews in Human Reproduction, Cambridge University Press, 1995:54–93.

  57. Garfield RE. Role of cell-to-cell coupling in control of myometrial contractility and labor. In: Garfield RE, Tabb TN, eds. Control of uterine contractility. Florida: CRC Press, 1994:40–81.

    Google Scholar 

  58. Tezuka N, Ali M, Chwalisz K, Garfield RE. Changes in transcripts encoding calcium channel subunits of rat myometrium during pregnancy. Am J Physiol 1995;269:C1008–17.

    Article  CAS  PubMed  Google Scholar 

  59. Garfield RE, Yallampalli C. Control of myometrial contractility and labor. In: Chwalisz K, Garfield RE, eds. Basic mechanisms controlling term and preterm birth. New York: Springer-Verlag, 1993:1–28.

    Google Scholar 

  60. Chwalisz K, Garfield RE. Regulation of the uterus and cervix during pregnancy and labor: Role of progesterone and nitric oxide. Ann N Y Acad Sci 1997;828:238–53.

    Article  CAS  PubMed  Google Scholar 

  61. Chwalisz K, Garfield RE. New molecular challenges in the induction of cervical ripening: Nitric oxide as the final metabolic mediator of cervical ripening. Hum Reprod 1998;13:101–4.

    Article  Google Scholar 

  62. Garfield RE, Saade GR, Buhimschi C, et al. Control and assessment of the uterus and cervix during pregnancy and labor. Hum Reprod Update 1998;4:673–95.

    Article  CAS  PubMed  Google Scholar 

  63. Chwalisz K, Garfield RE. Antiprogestins in the induction of labor. Ann N Y Acad Sci 1994;734:387–413.

    Article  CAS  PubMed  Google Scholar 

  64. Challis JR, Lye SJ, Gibb W. Prostaglandins and parturition. Ann N Y Acad Sci 1997;828:254–67.

    Article  CAS  PubMed  Google Scholar 

  65. Casey ML, MacDonald PC. The endocrinology of pregnancy. Ann N Y Acad Sci 1997;828:273–84.

    Article  CAS  PubMed  Google Scholar 

  66. Danforth DN. The morphology of the human cervix. Clin Obstet Gynecol 1983;26:7–13.

    Article  CAS  PubMed  Google Scholar 

  67. Woessner JF, Brewer TH. Formation and breakdown of collagen and elastin in the human uterus during pregnancy and postpartum involution. Biochem J 1963;89:75–82.

    CAS  PubMed  Google Scholar 

  68. Leppert PC, Keller S, Cerreta J, Mandl I. Conclusive evidence of elastin in the uterine cervix. Am J Obstet Gynecol 1982;142:179–82.

    Article  CAS  PubMed  Google Scholar 

  69. Danforth DN, Vies A, Breen M, Weinstein HG, Buckingham JC, Manalo P. The effect of pregnancy and labor on the human cervix: Changes in collagen, glycoprotein and glycosaminoglycans. Am J Obstet Gynecol 1986;120:641–51.

    Article  Google Scholar 

  70. Liggins GO Cervical ripening as an inflammatory reaction. In: Ellwood DA, Anderson ABM, eds. Cervix in pregnancy and labour: Clinical and biochemical investigation. New York: Churchill Livingstone, 1981:1–9.

  71. Bryant WM, Greenwell JE, Weeks PM. Alterations in collagen organization during dilatation of the cervix uteri. Surg Gynecol Obstet 1968;126:27–39.

    CAS  PubMed  Google Scholar 

  72. Harkness MLR, Harkness RD. Changes in the physical properties of the uterine cervix of the rat during pregnancy. J Physiol Lond 1959;148:524–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Kokenyesi R, Woessner JF. Relationship between dilatation of the rat uterine cervix and a small dermatan sulfate proteoglycan. Biol Reprod 1990;42:87–97.

    Article  CAS  PubMed  Google Scholar 

  74. Rajabi MR, Dean DD, Beydoun SN, Woessner JF. Elevated tissue levels of collagenase during dilation of uterine cervix in human parturition. Am J Obstet Gynecol 1988;139:971–6.

    Article  Google Scholar 

  75. Chwalisz K, Qing SS, Neef G, Elger W. The effect of the antigestagen ZK98.299 on the uterine cervix. Acta Endocrinol 1987;114(Suppl):113–4.

  76. Chwalisz K, Qing SS, Esch A, Elger W. Cervical softening in non-pregnant guinea pigs. Acta Endocrinol 1988;25(Suppl):1315.

  77. Calder AA, Embrey MP, Tait T. Ripening of the cervix with extra-amniotic prostaglandin E2 in viscous gel before induction of labour. Br J Obstet Gynaecol 1977;84:264–8.

    Article  CAS  PubMed  Google Scholar 

  78. Rath W, Osmers R, Adelmann-Grill BC, Stuhlsatz HW, Szevereny M, Kuhn W. Biochemical changes in the human cervical connective tissue after intracervical application of prostaglandin E2. Prostaglandins 1993;45:375–84.

    Article  CAS  PubMed  Google Scholar 

  79. Leppert PC. Anatomy and physiology of cervical ripening. Clin Obstet Gynecol 1995;38:267–79.

    Article  CAS  PubMed  Google Scholar 

  80. Leppert PC. The biochemistry and physiology of the uterine cervix during gestation and parturition. Prenat Neonat Med 1998;3:103–5.

    Google Scholar 

  81. Robinson G, Filshie GM, Cust M. Medical dilatation of the human cervix. In: Leppert PC, Woessner JF, eds. The extracellular matrix of the uterus, cervix and fetal membranes: Synthesis, degradation and hormonal regulation. New York: Perinatology Press, 1991:159–81.

    Google Scholar 

  82. Ekman G, Almström H, Granström L, Malmström A, Norman M, Woessner JF. Connective tissue in human cervical ripening. In: Leppert PC, Woessner JF, eds. The extracellular matrix of the uterus, cervix and fetal membranes: Synthesis, degradation and hormonal regulation. New York: Perinatology Press, 1991:87–96.

    Google Scholar 

  83. Mori Y, Ito A. Cervical ripening: Biochemical regulation. In: Leppert PC, Woessner JF, eds. The extracellular matrix of the uterus, cervix and fetal membranes: Synthesis, degradation and hormonal regulation. New York: Perinatology Press, 1991:77–86.

    Google Scholar 

  84. Leppert PC, Yeh Yu S. Elastin and collagen in the human uterus and cervix: Biochemical and histological correlation. In: Leppert PC, Woessner JF, eds. The extracellular matrix of the uterus, cervix and fetal membranes: Synthesis, degradation and hormonal regulation. New York: Perinatology Press, 1991:59–67.

    Google Scholar 

  85. Yeh Yu S, Leppert PC. The collagenous tissues of the cervix during pregnancy and delivery. In: Leppert PC, Woessner JF, eds. The extracellular matrix of the uterus, cervix and fetal membranes: Synthesis, degradation and hormonal regulation. New York: Perinatology Press, 1991:68–76.

    Google Scholar 

  86. Kline SB, Meng H, Munsick RA. Cervical dilation from laminaria tents and synthetic osmotic dilators used for 6 hours before abortion. Obstet Gynecol 1995;86:931–5.

    Article  CAS  PubMed  Google Scholar 

  87. Bokstrom H, Wiqvist N. Prostaglandin release from human cervical tissue in the first trimester of pregnancy after preoperative dilatation with hygroscopic tents. Prostaglandins 1995;50:179–88.

    Article  CAS  PubMed  Google Scholar 

  88. Rouben D, Arias F. A randomized trial of extra-amniotic saline infusion plus intracervical Foley catheter balloon versus prostaglandin E2 vaginal gel for ripening the cervix and inducing labor in patients with unfavorable cervices. Obstet Gynecol 1993;82:290–4.

    CAS  PubMed  Google Scholar 

  89. Porreco RP, Thorp JA. The cesarean birth epidemic: Trends, causes, and solutions. Am J Obstet Gynecol 1996;175:369–74.

    Article  CAS  PubMed  Google Scholar 

  90. Undenfriend S. Fluorescence assay in biology and medicine. Vol. I. New York: Academic Press, 1962.

  91. Cantor CR, Schimmel PR. Biophysical chemistry. New York: WH Freeman and Company, 1980.

  92. Lakowicz JR. Principles of fluorescence spectroscopy. New York: Plenum Press, 1986.

  93. Ramanujam N, Mitchell MF, Mahadevan A, Thomsen S, Silva E, Richards-Kortum R. Fluorescence spectroscopy: A diagnostic tool for cervical intrepithelial neoplasia (CIN). Gynecol Oncol 1994;52:31–8.

    Article  CAS  PubMed  Google Scholar 

  94. Lam S, Hung JYC, Kennedy SM, et al. Detection of dysplasia and carcinoma in situ by ratio fluorometry. Am Rev Respir Dis 1992;146:1458–61.

    Article  CAS  PubMed  Google Scholar 

  95. Cothren RM, Richards-Kortum RR, Sivak MV, et al. Gastrointestinal tissue diagnosis by laser induced fluorescence spectroscopy at endoscopy. Gastrontest Endosc 1990;36:105–11.

    Article  CAS  Google Scholar 

  96. Schomaker KT, Frisoli JK, Compton CC, et al. Ultraviolet laser-induced fluorescence of colonic tissue: Basic biology and diagnostic potential. Lasers Surg Med 1992;12:63–78.

    Article  Google Scholar 

  97. Glassman W, Byam-Smith M, Garfield RE. Changes in rat cervical collagen during gestation and following antiprogesterone treatment as measured in vivo with light induced autofluo-rescence. Am J Obstet Gynecol 1995;173:1550–6.

    Article  CAS  PubMed  Google Scholar 

  98. Fujimoto D. Isolation and characterization of a fluorescent material in bovine achilles tendon collagen. Biochem Biophysics Res Commun 1977;76:1124–9.

    Article  CAS  Google Scholar 

  99. Glassman WS, Liao QP, Shi SQ, et al. Fluorescence probe for cervical examination during various reproductive states. Proceedings of SPIE - Advances in Fluorescence Sensing Technology III, 1997;2980:286–92.

    Article  Google Scholar 

  100. Fittkow CT, Shi SQ, Bytautiene E, Olson G, Saade GR, Garfield RE. Changes in light-induced fluorescence of cervical collagen in guinea pigs during gestation and after sodium nitro-prusside treatment. J Perinat Med 2001;29:535–43.

    Article  CAS  PubMed  Google Scholar 

  101. Olson G, Goodrum L, Martin E, Saade GR, Garfield RE. Noninvasive measurement of cervical collagen content in women approaching delivery (abstract). Am J Obstet Gynecol 1998;178:S91.

  102. Garfield RE, Maner W, Martin E, Saade GR. Prediction of parturition in humans using transabdominal uterine electromyographic activity recording (abstract). Am J Obstet Gynecol 2000;182:S53.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. E. Garfield PhD.

Additional information

The studies described in this review article are funded by NIH grant 5 R01 HD37480. We also acknowledge the support of the General Clinical Research Center (GCRC) at the University of Texas Medical Branch, funded from grant M01 RR00073 from the National Center for Research Resources, NIH, USPHS.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garfield, R.E., Maul, H., Maner, W. et al. Uterine Electromyography and Light-Induced Fluorescence in the Management of Term and Preterm Labor. Reprod. Sci. 9, 265–275 (2002). https://doi.org/10.1177/107155760200900503

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/107155760200900503

Key words

Navigation