Skip to main content
Log in

Relationship of Ion Channel Activity to Control of Myometrial Calcium

  • Review Article
  • Published:
The Journal of the Society for Gynecologic Investigation: JSGI Aims and scope Submit manuscript

Abstract

This article reviews the contribution of ion channels to membrane potential, the ion channels expressed in myometrium, and the effect of ion channel activity on the control of myometrial intracellular free calcium. Plasma membranes constitute barriers to permeability that establish concentration gradients of ions inside versus outside the call. Na+, Ca2+, and Cl are normally in higher concentration outside than inside cells, whereas K+ is higher inside. In myometrium, Ca2+ entry into cells mediates myometrial membrane potential changes and serves as the internal signal for contraction. K+ efflux is thought to promote repolarization after an action potential and to participate in setting the resting membrane potential. Ions cross the cell membrane through channels that have different regulated properties and selectives. Ion movement has been measured by a number of techniques, including radiolabeled ion flux, use of intracellular indicators, and patch-clamp methodology. A number of myometrical Ca2+ channels have been described, including voltage-regulated L-type channels and Ca2+ entry in response to intracellular Ca2+ store depletion. Fast Na+ channels may contribute to cation entry late in pregnancy. K+ channels in myometrium include Ca2+-activated channels, a delayed rectifier, and an inward rectifier. A Ca2+-activated Cl channel is also present in myometrium. In addition to being regulated by Ca2+, the activity of a number of these channels can be regulated by uterine contractants and relaxants. Regulation of ion channel activity can affect intracellular free Ca2+ concentrations in the myometrium. Therefore, control of ion channel activity represents one of several approaches for controlling myometrial contractile activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Word RA. Myosin phosphorylation and the control of myomctrial contraction/relaxation. Semin Perinatol 1995;19:3–14.

    Article  CAS  PubMed  Google Scholar 

  2. Hille B. Ionic channels of excitable membranes. 2nd ed. Sunderland, MA: Sinauer Associates, 1992:1–139.

    Google Scholar 

  3. Kao CY. Electrophysiological properties of uterine muscle. In: Wynn RM, Jollie WP, eds. Biology of the uterus. New York: Plenum Press, 1989:403–53.

    Chapter  Google Scholar 

  4. Marshall JM. Relation between membrane potential and spontaneous contraction of the uterus. In: Garfield RE, ed. Uterine contractility. Mechanisms of control. Norwell, MA: Serono Symposia USA, 1990:3–7.

    Google Scholar 

  5. Parkington HC, Coleman HA. The role of membrane potential in the control of uterine motility. In: Carsten ME, Miller JD, eds. Uterine function: Molecular and cellular aspects. New York: Plenum Press, 1990:195–248.

    Chapter  Google Scholar 

  6. Sanborn BM. Ion channels and the control of myometrial electrical activity. Semin Perinatol 1995;19:31–40.

    Article  CAS  PubMed  Google Scholar 

  7. Aidley DJ, Stanfield PR. Ion channels. Cambridge, UK: Cambridge University Press, 1996:23–57.

    Google Scholar 

  8. Haugland RP. Handbook of fluorescent probes and research chemicals. Eugene, OR: Molecular Probes, 1999.

    Google Scholar 

  9. Anwer K, Hovington JA, Sanborn BM. Antagonism of contractants and relaxants at the level of intracellular calcium and phosphoinositide turnover in the rat uterus. Endocrinology 1989;124:2995–3002.

    Article  CAS  PubMed  Google Scholar 

  10. Burghardt RC, Barhoumi R, Stickney M, Monga M, Ku CY, Sanborn BM. Correlation between connexin 43 expression, cell-cell communication, and oxytocin-induced Ca2+-responses in an immortalized human myometrial cell line. Biol Reprod 1996;55:433–8.

    Article  CAS  PubMed  Google Scholar 

  11. Luckas MJ, Taggart MJ, Wray S. Intracellular calcium stores and agonist-induced contractions in isolated human myometrium. Am J Obstet Gynecol 1999;181:468–76.

    Article  CAS  PubMed  Google Scholar 

  12. Szal SE, Repke JT, Seely EW, Graves SW, Parker CA, Morgan KG. [Ca2+]i signaling in pregnant human myometrium. Am J Physiol 1994;267:E77–87.

    CAS  PubMed  Google Scholar 

  13. Moore ED, Becker PL, Fogarty KE, Williams D, Fay FS. Ca2+imaging in single living cells: Theoretical and practical issues. Cell Calcium 1990;11:157–9.

    Article  CAS  PubMed  Google Scholar 

  14. Grynkiewicz G, Poenie M, Tsien RY. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem 1985;260:3440–50.

    CAS  PubMed  Google Scholar 

  15. ZhuGe R, Tuft RA, Fogarty KE, Bellve K, Fay FS, Walsh JV Jr. The influence of sacroplasmic reticulum Ca2+ concentration on Ca2+ sparks and spontaneous transient outward currents in single smooth muscle cells. J Gen Physiol 1999;113:215–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Reiner O, Marshall JM. Action of D600 on spontaneous electrical stimulatory activity of the parturitient rat uterus. Naunyn Schmiedebergs Arch Pharmacol 1975;290:21–8.

    Article  CAS  PubMed  Google Scholar 

  17. Kawarabayashi T, Ikeda M, Sugimori H, Nakano H. Spontaneous electrical activity and effects of noradrenaline on pregnant human myometrium recorded by the single sucrose gap method. Acta Physiol Hung 1986;67:71–82.

    CAS  PubMed  Google Scholar 

  18. Inoue Y, Nakao K, Okabe K, et al. Some electrical properties of human pregnant myometrium. Am J Obstet Gynecol 1990;162:1090–8.

    Article  CAS  PubMed  Google Scholar 

  19. Anwer K, Oberti C, Perez GJ, et al. Calcium-activated K+channels as modulators of human myometrial contractile activity. Am J Physiol 1993;265:C976–85.

    Article  CAS  PubMed  Google Scholar 

  20. Latorrc R, Oberhauser A, Labarca P, Alvarez O. Varieties of calcium-activated potassium channels. Annu Rev Physiol 1989;51:385–99.

    Article  Google Scholar 

  21. Garfield RE, Ali M, Yallampalli C, Izumi H. Role of gap junctions and nitric oxide in control of myometrial contractility. Semin Perinatol 1995;19:41–51.

    Article  CAS  PubMed  Google Scholar 

  22. Wolfs GMJA, van Leeuwen A. Electromyographic observations on the human uterus during labour. Acta Obstet Gyn Scand 1979;90 Suppl:1–61.

    Article  CAS  Google Scholar 

  23. Mironneau J. Ion channels and the control of uterine contractility. In: Garfield RE, Tabb TN, eds. Control of uterine contractility. Boca Raton, FL: CRC Press, 1993:1–22.

    Google Scholar 

  24. Sperelakis N, Inoue Y, Ohya Y. Fast Na+ and slow Ca2+ current in smooth muscle from pregnant rat uterus. Mol Cell Biochem 1992;114:79–89.

    Article  CAS  PubMed  Google Scholar 

  25. Inoue Y, Sperelakis N. Gestational change in Na+ and Ca2+channel current densities in rat myometrial smooth muscle cells. Am J Physiol 1991;260:C658–63.

    Article  CAS  PubMed  Google Scholar 

  26. Jmari K, Mironneau C, Mironneau J. Inactivation of calcium channel current in rat uterine smooth muscle: Evidence for calcium- and voltage-mediated mechanisms. J Physiol 1986;380:111–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Monga M, Creasy RK. Pharmacologic management of preterm labor. Semin Perinatol 1995;19:84–96.

    Article  CAS  PubMed  Google Scholar 

  28. Tezuka N, Ali M, Chwalisz K, Garfield RE. Changes in transcripts encoding calcium channel subunits of rat myometrium during pregnancy. Am J Physiol 1995;269:C1008–17.

    Article  CAS  PubMed  Google Scholar 

  29. Birnbaumer L, Zhu X, Jiang M, et al. On the molecular basis and regulation of cellular capacitative calcium entry: Roles for trp proteins. Proc Natl Acad Sci USA 1996;93:15195–202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Holmann T, Obukhov AG, Schaefer M, Harteneck C, Gudermann T, Schultz G. Direct activation of human TRPC6 and TRPC3 channels by diacylglycerol. Nature 1999;397:259–63.

    Article  CAS  Google Scholar 

  31. Zhu X, Jiang M, Peyton M, et al. Trp, a novel mammalian gene family essential for agonist-activated capacitative Ca2+ entry. Cell 1996;85:661–71.

    Article  CAS  PubMed  Google Scholar 

  32. Gupta A, Tsujimoto S, Sanborn BM. The presence of Trp proteins associated with capacitative calcium entry in a human myometrial cell line. Soc Study Reprod 1999;128:133.

    Google Scholar 

  33. Young RC, Herndon-Smith L. Characterization of sodium channels in cultured human uterine smooth muscle cells. Am J Obstet Gynecol 1991;164:175–81.

    Article  CAS  PubMed  Google Scholar 

  34. Kusaka M, Sperelakis N. Genistein inhibition of fast Na+ current in uterine leiomyosarcoma cells is independent of tyrosine kinase inhibition. Biochim Biophys Acta 1996;1278:1–4.

    Article  PubMed  Google Scholar 

  35. George AL, Knittle TJ, Tamkun MM. Molecular cloning of an atypical voltage-gated sodium channel expressed in human heart and uterus: Evidence for a distinct gene family. Proc Natl Acad Sci USA 1992;89:4893–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Boyle MB, Heslip LA. Voltage-dependent Na+ channel mRNA expression in pregnant myometrium. Receptors Channels 1994;2:249–53.

    CAS  PubMed  Google Scholar 

  37. Mollard P, Mironneau J, Amedee T, Mironneau C. Electrophysiological characterization of single pregnant rat myometrial cells in short-term primary culture. Am J Physiol 1986;250:C47–54.

    Article  CAS  PubMed  Google Scholar 

  38. Toro L, Stefani E, Erulkar S. Hormonal regulation of potassium currents in single myometrial cells. Proc Natl Acad Sci USA 1990;87:2892–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Tritthart HA, Manhcrt W, Fleischhacker A, et al. Potassium channels and modulating factors of channel functions in the human myometrium. Z Kardiol 1991;80 Suppl 7:29–33.

    PubMed  Google Scholar 

  40. Perez GJ, Toro L, Erulkar SD, Stefani E. Characterization of large conductance calcium-activated potassium channels from human myometrium. Am J Obstet Gynecol 1993;168:652–60.

    Article  CAS  PubMed  Google Scholar 

  41. Erulkar SD, Ludmir J, Ger B, Non RD. Expression of different potassium channels in cells isolated from human myometrium and leiomyomas. Am J Obstet Gynecol 1993;168:1628–39.

    Article  CAS  PubMed  Google Scholar 

  42. Khan RN, Smith SK, Ashford ML. Contribution of calcium-sensitive potassium channels to NS1619-induced relaxation in human pregnant myometrium. Hum Reprod 1998;13:208–13.

    Article  CAS  PubMed  Google Scholar 

  43. Adelwoehrer ME, Mahnert W. Hexoprenaline activates potassium channels of human myometrial myocytes. Arch Gynecol Obstet 1993;252:179–84.

    Article  CAS  PubMed  Google Scholar 

  44. Meera P, Anwer K, Monga M, et al. Relaxin stimulates myometrial calcium-activated potassium channel activity via protein kinase A. Am J Physiol 1995;269:C312–7.

    Article  CAS  PubMed  Google Scholar 

  45. Khan RN, Smith SK, Morrison JJ, Ashford ML. Properties of large-conductance K+ channels in human myometrium during pregnancy and labour. Proc R Soc Lond B Biol Sci 1993;251:9–15.

    Article  CAS  Google Scholar 

  46. Cheuk JMS, Hollingsworth M, Hughes SJ, et al. Inhibition of contractions of the isolated human myometrium by potassium channel openers. Am J Obstet Gynecol 1993;3:953–60.

    Article  Google Scholar 

  47. Hollingsworth M, Downing SJ, Cheuk JMS, et al. Pharmacological strategies for uterine relaxation. In: Garfield RE, Tabb TN, eds. Control of uterine contractility. Boca Raton, FL: CRC Press, 1993:401–43.

    Google Scholar 

  48. Downing SJ, Hollingsworth M. Action of relaxin on uterine contractions—a review. J Reprod Fertil 1993;99:275–82.

    Article  CAS  PubMed  Google Scholar 

  49. Heaton RC, Wray S, Eisner DA. Effects of metabolic inhibition and changes of intracellular pH on potassium permeability and contraction of rat uterus. J Physiol 1993;465:43–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Boyle MB, MacLusky NJ, Naftolin F, Kaczmarek LK. Hormonal regulation of K+ channel messenger RNA in rat myometrium during oestrus cycle and in pregnancy. Nature 1987;330:373–5.

    Article  CAS  PubMed  Google Scholar 

  51. Folander K, Smith JS, Antanavage J, Bennett C, Stein RB, Swanson R. Cloning and expression of the delayed-rectifier IsK channel from neonatal rat heart and diethylstilbestrol-primed rat uterus. Proc Natl Acad Sci USA 1990;87:2975–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Pragnell M, Snay KJ, Trimmer JS, et al. Estrogen induction of a small, putative K+ channel mRNA in rat uterus. Neuron 1990;4:807–12.

    Article  CAS  PubMed  Google Scholar 

  53. Lundgren DW, Moore JJ, Chang SM, Collins PL, Chang AS. Gestational changes in the uterine expression of an inwardly rectifying K+ channel, ROMK. Proc Soc Exp Biol Med 1997;216:57–64.

    Article  CAS  PubMed  Google Scholar 

  54. Coleman HA, Parkington HC. Single channel Cl and K+currents from cells of uterus not treated with enzymes. Pflugers Arch 1987;410:560–2.

    Article  CAS  PubMed  Google Scholar 

  55. Arnaudeau S, Lepetre N, Mironneau J. Chloride and monovalent ion-selective cation currents activated by oxytocin in pregnant rat myometrial cells. Am J Obstet Gynecol 1994;171:491–501.

    Article  CAS  PubMed  Google Scholar 

  56. Wray S. Uterine contraction and physiological mechanisms of modulation. Am J Physiol 1993;264:0–18.

    Article  CAS  Google Scholar 

  57. Sanborn BM, Yue C, Wang W, Dodge KL. G protein signalling pathways in myometrium: Affecting the balance between contraction and relaxation. Rev Reprod 1998;3:196–205.

    Article  CAS  PubMed  Google Scholar 

  58. Sanborn BM, Anwer K, Wen Y, Stefani E, Toro L, Singh SP. Modification of Ca2+ regulatory systems. In: Garfield RE, Tabb TN, eds. Control of uterine contractility. Boca Raton, FL: CRC Press, 1994:105–28.

    Google Scholar 

  59. Monga M, Campbell DF, Sanborn BM. Oxytocin-stimulated capacitative calcium entry in human myometrial cells. Am J Obstet Gynecol 1999;181:424–9.

    Article  CAS  PubMed  Google Scholar 

  60. Zhuge R, Li S, Chen TH, Hsu WH. Oxytocin induced a biphasic increase in the intracellular Ca2+ concentration of porcine myometrial cells: Participation of a pertussis toxin-insensitive G-protein, inositol 1,4,5-tnsphosphate-sensitive Ca2+ pool, and Ca2+ channels. Mol Reprod Dev 1995;41:20–8.

    Article  CAS  PubMed  Google Scholar 

  61. Inoue Y, Shimamura K, Sperelakis N. Oxytocin actions on voltage-dependent ionic channels in pregnant rat uterine smooth muscle cells. Can J Physiol Pharmacol 1992;70:1597–603.

    Article  CAS  PubMed  Google Scholar 

  62. Mironneau J. Ion channels and excitation-contraction coupling in myometrium. In: Garfield RE, ed. Uterine contractility. Nor-well, MA: Serono Symposia USA, 1990:9–19.

    Google Scholar 

  63. Holda JR, Oberti C, Perez-Reyes E, Blatter LA. Characterization of an oxytocin-induced rise in [Ca2+]i in single human myometrium smooth muscle cells. Cell Calcium 1996;20:43–51.

    Article  CAS  PubMed  Google Scholar 

  64. Lepetre N, Mironneau J, Morel JL. Both alpha 1A- and alpha 2A-adrenoreceptor subtypes stimulate voltage-operated L-type calcium channels in rat portal vein myocytes. Evidence for two distinct transduction pathways. J Biol Chem 1994;269:29546–52.

    Google Scholar 

  65. Putney JW Jr, McKay RR. Capacitative calcium entry channels. Bioessays 1999;21:38–46.

    Article  PubMed  Google Scholar 

  66. Broad LM, Cannon TR, Taylor CW. A non-capacitative pathway activated by arachidonic acid is the major Ca2+ entry mechanism in rat A7r5 smooth muscle cells stimulated with low concentrations of vasopressin. J Physiol (Lond) 1999;517:121–34.

    Article  CAS  Google Scholar 

  67. Anwer K, Toro L, Oberti C, Stefani E, Sanborn BM. Ca(2+)-activated K+ channels in pregnant rat myometrium: Modulation by β-adrenergic agent. Am J Physiol 1992;263:0049–56.

    Article  Google Scholar 

  68. Parkington HC, Tonta MA, Davies NK, Brennecke SP, Coleman HA. Hyperpolarization and slowing of the rate of contraction in human uterus in pregnancy by prostaglandins E2 and F2 alpha: Involvement of the Na+ pump. J Physiol (Lond) 1999;514:229–43.

    Article  CAS  Google Scholar 

  69. Rao MR, Sanborn BM. Relaxin increase calcium efflux from rat myometrial cells in culture. Endocrinology 1986;119:435–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara M. Sanborn PhD.

Additional information

Supported in part by National Institutes of Health grant no. HD09618.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sanborn, B.M. Relationship of Ion Channel Activity to Control of Myometrial Calcium. Reprod. Sci. 7, 4–11 (2000). https://doi.org/10.1177/107155760000700103

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/107155760000700103

Key words

Navigation