Skip to main content

Advertisement

Log in

A Quantitative Approach for Making Go/No-Go Decisions in Drug Development

  • Biostatistics
  • Published:
Drug information journal : DIJ / Drug Information Association Aims and scope Submit manuscript

Abstract

There are many decision points along the product development continuum. Formal clinical milestones, such as the end of phase 1, phase 2a (proof of mechanism or proof of concept), and phase 2b provide useful decision points to critically evaluate the accumulating data. At each milestone, sound decisions begin with asking the right questions and choosing the appropriate design as well as criteria to make go/no-go decisions. It is also important that knowledge about the new investigational product, gained either directly from completed trials or indirectly from similar products for the same disorder, be systematically incorporated into the evaluation process. In this article, we look at metrics that go beyond type I and type II error rates associated with the traditional hypothesis test approach. We draw on the analogy between diagnostic tests and hypothesis tests to highlight the need for confirmation and the value of formally updating our prior belief about a compound’s effect with new data. Furthermore, we show how incorporating probability distributions that characterize current evidence about the true treatment effect could help us make decisions that specifically address the need at each clinical milestone. We illustrate the above with examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Masia N. The cost of developing a new drug. In Focus on Intellectual Property Rights. US Department of State; April 23, 2008. http://www.america.gov/st/business-English/2008/April/20080429230904myleen0.5233981.html.

  2. Parmar MK, Ungerleider RS, Simon R. Assessing whether to perform a confirmatory randomized clinical trial. J Natl Cancer Inst. 1996;88:1645–1651.

    Article  CAS  PubMed  Google Scholar 

  3. Lee SJ, Zelen M. Clinical trials and sample size considerations: another perspective. Stat Sci. 2000;15(2):95–110.

    Article  Google Scholar 

  4. O’Hagan A, Stevens JW, Campbell MJ. Assurance in clinical trial design. Pharm Stat. 2005;4:187–201.

    Article  Google Scholar 

  5. Chuang-Stein C. Sample size and the probability of a successful trial. Pharm Slat. 2006;5:305–309.

    Article  PubMed  Google Scholar 

  6. Hobbs BP, Carlin BP. Practical Bayesian design and analysis for drug and device clinical trials. J Biopharm Stat. 2008;18:54–80.

    Article  PubMed  Google Scholar 

  7. Kowalski KG, Ewy W, Hutmacher MM, Miller R, Krishnaswami S. Model-based drug development—a new paradigm for efficient drug development. Biopharm Rep. 2007;15(2):2–22.

    Google Scholar 

  8. Kowalski KG, French JL, Smith MK, Hutmacher MM. A model-based framework for quantitative decision-making in drug development. Presented at the American Conference on Pharmacometrics. Tucson AZ, March 12, 2008. http://tucson2008.go-acop.org/pdfs/8-Kowalski_FINAL.pdf

  9. Kowalski KG, Olson S, Remmers AE, Hutmacher MM. Modeling and simulation to support dose selection and clinical development of SC-75416. a selective COX-2 inhibitor for the treatment of acute and chronic pain. Clin Pharm Ther. 2008;83:857–866.

    Article  CAS  Google Scholar 

  10. Smith MK, French J, Kowalski K, Ewy W. Enhanced quantitative decision making—reducing the likelihood of incorrect decisions. Presented at the PAGE (Population Approach Group in Europe) Predictive Modeling in Drug Development Satellite Meeting, St. Petersburg, Russia. June 23, 2009.

  11. Chuang-Stein C, Yang R. A revisit of sample size decision in confirmatory trials. Stat Biopharm Res. 2010;2:239–248.

    Article  Google Scholar 

  12. Fleiss JL. Design and Analysis of Clinical Experiments. New York: Wiley: 1999.

    Book  Google Scholar 

  13. Browner WS, Newman TB. Are all significant p-values created equal? JAMA. 1987;257:2459–2463.

    Article  CAS  PubMed  Google Scholar 

  14. Pater JL, Willan AR. Clinical trials as diagnostic tests. Control Clin Trials. 1984;5:107–113.

    Article  CAS  PubMed  Google Scholar 

  15. Wacholder S, Chanock S, Garcia-Closas M, El Ghormli L, Rothman N. Assessing the probability that a positive report is false: an approach for molecular epidemiology studies. J Natl Cancer Inst. 2004;96:434–442.

    Article  PubMed  PubMed Central  Google Scholar 

  16. US Department of Health and Human Services. Food and Drug Administration. Innovation or stagnation? Challenge and opportunity on the critical path to new medical products. 2004. http://www.fda.gov/downloads/ScienceResearch/SpecialTopics/CriticalPathInitiative/CriticalPathOpportunitiesReports/ucm113411.pdf.

  17. Peck CC, Barr WH, Benet LZ, et al. Opportunities for integration of pharmacokinetics, pharmacodynamics and toxicokinetics in rational drug development. Clin Pharmacol Ther. 1992;51:465–473.

    Article  CAS  PubMed  Google Scholar 

  18. Sheiner LB. Learning versus confirming in clinical drug development. Clin Pharmacol Ther. 1997;61:275–291.

    Article  CAS  PubMed  Google Scholar 

  19. Grasela TH, Dement CW, Kolerman OG, et al. Pharmacometrics and the transition to model-based development. Clin Pharm Ther. 2007;82:137–142.

    Article  CAS  Google Scholar 

  20. Lalonde RL, Kowalski KG, Hutmacher MM, et al. Model-based drug development. Clin Pharm Ther. 2007;82:21–32.

    Article  CAS  Google Scholar 

  21. Zhang L, Sinha V, Forgue T, et al. Model-based drug development: the road to quantitative pharmacology. J Pharmacokinet Pharmacodyn. 2006;33:369–393.

    Article  CAS  PubMed  Google Scholar 

  22. Zhang L, Pfister M, Meibohm B. Concepts and challenges in quantitative pharmacology and model-based drug development. AAPS J. 2008;10:552–559.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ades A, Sutton AJ. Multiple parameter evidence synthesis in epidemiology and medical decisionmaking: current approaches. J R Stat Soc. A. 2006;169:5–35.

    Article  Google Scholar 

  24. Mandema JW, Hermann D, Wang W, et al. Model-based development of gemcabene, a new lipid-altering agent. AAPS J. 2005;7:E513–E522.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Ahn JE, French JL. Longitudinal aggregate data model-based meta-analysis with NONMEM: approaches to handling within treatment arm correlation. J Pharmacokinet Pharmacodyn. 2010;37:179–201.

    Article  PubMed  Google Scholar 

  26. Ito K, Ahadieh S, Corrigan B, French J, Fullerton T, Tensfeldt T. Alzheimer’s Disease Working Group. A disease progression meta-analysis model in Alzheimer’s disease. Alzheimers Dement. 2010;6:39–53.

    Article  CAS  PubMed  Google Scholar 

  27. Smith MK, Marshall S. A Bayesian design and analysis for dose-response using informative prior information. J Biopharm Stat. 2006;16:695–709.

    Article  PubMed  Google Scholar 

  28. Santen G, van Zwet E, Danhof M, Della Pasqual O. From trial and error to trial simulation. Part 1: the importance of model-based drug development for antidepressant drugs. Clin Pharmacol Ther. 2009;86:248–254.

    Article  CAS  PubMed  Google Scholar 

  29. Santen G, Horrigan J, Danhof M, Delia Pasqual O. From trial and error to trial simulation. Part 2: an appraisal of current beliefs in the design and analysis of clinical trials for antidepressant drugs. Clin Pharmacol Ther. 2009;86:255–261.

    Article  CAS  PubMed  Google Scholar 

  30. Sultana SR, Marshall S, Davis J, Littman BH. Experiences with dose finding in patients in early drug development: the use of biomarkers in early decision making in appropriate dose selection—how to optimize clinical drug development. Ernst Schering Foundation Symp Proc. 2007;59:65–79.

    Article  Google Scholar 

  31. de Greef R. Target occupancy biomarkers: schizophrenia. In: Danhof M, Van der Graaf PH, Holford NHG, eds. Measurement and Kinetics of in Vivo Drug Effects: Advances in Simultaneous Pharmacokinetic/Pharmacodynamic Modelling. 6th International Symposium. Leiden/Amsterdam Center for Drug Research: 2010:67–70.

    Google Scholar 

  32. Danhof M, Della Pasqua O, Knibbe CAJ, de Lange ECM, Voskuyl RA, Ploeger BA. Quantitative systems pharmacology: what are the targets? In: Danhof M, Van der Graaf PH, Holford NHG, eds. Measurement and Kinetics of in Vivo Drug Effects: Advances in Simultaneous Pharmacokinetic/Pharmacodynamic Modelling. 6th International Symposium. Leiden/Amsterdam Center for Drug Research: 2010:5–12.

    Google Scholar 

  33. Van der Graaf PH, Benson N. Bridging systems biology and PKPD: towards novel drugs. In: Danhof M, Van der Graaf PH, Holford NHG, eds. Measurement and Kinetics of in Vivo Drug Effects: Advances in Simultaneous Pharmacokinetic/Pharmacodynamic Modelling. 6th International Symposium. Leiden/Amsterdam Center for Drug Research: 2010:17–22.

    Google Scholar 

  34. Chuang-Stein C, Kirby S, Hirsch I, Atkinson G. The role of the minimum clinically important difference and its impact on designing a trial. Pharm Stat. 2010. Published online. DOI 10.1002/pst459.

  35. Spano JP, Chodkiewicz C, Maurel J, et al. Efficacy of gemcitabine plus axitinib compared with gemcitabine alone in patients with advanced pancreatic cancer: an open-label randomized phase II study. Lancet. 2008;371:2101–2108.

    Article  CAS  PubMed  Google Scholar 

  36. Wang SJ, Hung HMJ, O’Neill RT. Adapting the sample size planning of a phase III trial based on phase II data. Pharm Stat. 2006;5:85–97.

    Article  CAS  PubMed  Google Scholar 

  37. Carroll KJ. Back to basics: explaining sample size in outcome trials, are statisticians doing a thorough job? Pharm Stat. 2009;8:333–345.

    Article  PubMed  Google Scholar 

  38. Staquet MJ, Rozencweig M, Von Hoff DD, Mugia FM. The delta and epsilon errors in the assessment of clinical trials. Cancer Treat Rep. 1979;63:1917–1921.

    CAS  PubMed  Google Scholar 

  39. Simon R. Randomized clinical trials and research strategy. Cancer Treat Rep. 1982;66:1083–1087.

    CAS  PubMed  Google Scholar 

  40. Simon R. Some practical aspects of the interim monitoring of clinical trials. Stat Med. 1994;13:1401–1409.

    Article  CAS  PubMed  Google Scholar 

  41. Berger J, Sellke T. Testing of a point null hypothesis: the irreconcilability of significance levels and evidence. J Am Stat Assoc. 1987;82:112–122.

    Google Scholar 

  42. Liu PY, LeBlanc M, Desai M. False positive rates of randomized phase II designs. Control Clin Trials. 1999;20:343–352.

    Article  CAS  PubMed  Google Scholar 

  43. Stallard N, Todd S, Whitehead J. Estimation following selection of the largest of two normal means. J Stat Plan Infer. 2008;138:1629–1638.

    Article  Google Scholar 

  44. Bauer P, Koenig F, Brannath W, Posch M. Selection and bias—two hostile brothers. Stat Med. 2010;29(1):1–13.

    PubMed  Google Scholar 

  45. Julious SA, Swank DJ. Moving statistics beyond the individual clinical trial: applying decision science to optimize a clinical development plan. Pharm Stat. 2005;4(1):37–46.

    Article  Google Scholar 

  46. Burman CF, Grieve AP, Senn S. Decision analysis in drug development. In: Dmitrienko A, Chuang-Stein C, Agostino R, ed. Pharmaceutical Statistics Using SAS: A Practical Guide. Cary, NC: SAS Institute; 2007:385–428.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christy Chuang-Stein.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chuang-Stein, C., Kirby, S., French, J. et al. A Quantitative Approach for Making Go/No-Go Decisions in Drug Development. Ther Innov Regul Sci 45, 187–202 (2011). https://doi.org/10.1177/009286151104500213

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/009286151104500213

Key Words

Navigation