Skip to main content
Log in

Pharmacokinetics of the nitroxide PCA measured by in vivo EPR

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

PCA (2,2,5,5-tetramethylpiperidine-1-oxyl-3-carboxylic acid) is a relatively stable free radical which has been shown to be useful as a contrast agent for nuclear magnetic resonance imaging and as an imaging/spectroscopy agent for EPR. In an effort to determine the role of the liver and kidney in the pharmacokinetics of PCA, using low frequency in vivo EPR spectroscopy, we followed the clearance of PCA after intravenous injection in mice: under normal conditions, with a restricted blood supply to the kidneys, after exposure to an acute hepatotoxin CCl4, and after exposure to lipopolysaccharide (endotoxin). The observed pharmacokinetics fit a two-component model. The fast component was dramatically affected when the renal vessels were restricted, while CCl4 and endotoxin had a smaller but significant effect. The half times of the slow components were not significantly different (p>0.05) in the groups treated by renal blood flow occlusion, CCl4, or LPS, compared with the control group. In conclusion, we find that the pharmacokinetics of PCA need to be completely described in term of a two component model: the fast component of the decay is mainly due to the elimination by the kidneys and also is affected by the time for the initial distribution; the slow component is related to the bioreduction of the nitroxide. In addition to the liver other tissues can also effectively metabolize PCA. The effect of oxygen on the rate of metabolism is modest at most.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Gelvan, P. Saltman, and S.R. Powell, Proc. Natl. Acad. Sci. USA 88, 4680 (1991).

    Article  CAS  Google Scholar 

  2. M.C. Krishna, D.A. Grahame, A. Samuni, J.B. Mitchell, and A. Russo, Proc. Natl. Acad. Sci. USA 89, 5537 (1992).

    Article  CAS  Google Scholar 

  3. S. M. Hahn, L. Wilson, J. Liebmann, W. De Graff, J. Gamson, A. Samuni, D. Venzon, and J.B. Mitchell, Radiat. Res. 132, 87 (1992).

    Article  CAS  Google Scholar 

  4. R.C. Brasch, D.A. London, G.E. Wesbey, T.N. Tozer, D.E. Nitecki, R.D. Williams, J. Doemeny, L. Dallas Tuck, and D.P. Lallemand, Radiology 147, 773 (1983).

    CAS  Google Scholar 

  5. B. Gallez, R. Demeure, R. Debuyst, D. Leonard, F. Dejehet, and P. Dumont, Magn. Reson. Imag. 10, 445 (1992).

    Article  CAS  Google Scholar 

  6. B. Gallez, R. Debuyst, R. Demeure, F. Dejehet, C. Grandin, B. Van Beers, H. Taper, J. Pringot, and P. Dumont, Magn. Reson. Med. 30, 592 (1993).

    Article  CAS  Google Scholar 

  7. B. Gallez, V. Lacour, R. Demeure, R. Debuyst, F. Dejehet, J. L. De Keyser, and P. Dumont, Magn. Reson. Imag. 12, 61 (1994).

    Article  CAS  Google Scholar 

  8. H.M. Swartz. In: E. Feig (Ed.), Advances in Magnetic Resonance Imaging, Ablex Publishing Company, Norwood, 1989, p. 49.

    Google Scholar 

  9. H.M. Swartz and T. Walczak, Phys. Med. 9, 41 (1993).

    Google Scholar 

  10. S. Colacicchi, M. Ferrari, and A. Sotgiu, Int. J. Biochem. 24, 205 (1992).

    Article  CAS  Google Scholar 

  11. D.J. Lurie, I. Nicholson, M.A. Foster, and J.R. Mallard, Phil. Trans. R. Soc. Lond. A333, 453 (1990).

    Article  CAS  Google Scholar 

  12. D. Grucker, D. Guiberteau, B. Eclancher, J. Chambron, R. Chiarelli, A. Rassat, G. Subra and B. Gallez, J. Magn. Reson. B 106, 101 (1995).

    Article  CAS  Google Scholar 

  13. R.C. Brasch, Radiology 147, 781 (1983).

    CAS  Google Scholar 

  14. G. Bacic, M.J. Nilges, T. Walczak, and H.M. Swartz, Phys. Med. 24, 307 (1989).

    Google Scholar 

  15. M. Ferrari, V. Quaresima, C.L. Ursini, M. Alecci, and A Sotgiu, Int. J. Radiat. Oncology Biol. Phys. 29, 421 (1994).

    Article  CAS  Google Scholar 

  16. M Ferrari, S. Colacicchi, G. Gualtieri, M. T. Santini, and A Sotgiu, Biochem. Biophys. Res. Commun. 166, 168 (1990).

    Article  CAS  Google Scholar 

  17. V. Quaresima, M. Alecci, M. Ferrari, and A. Sotgiu, Biochem. Biophys. Res. Commun. 183, 829 (1992).

    Article  CAS  Google Scholar 

  18. V. Quaresima, C.L. Ursini, G. Gualtieri, A. Sotgiu, and M. Ferrari, Biochim. Biophysica Acta 1182, 115 (1993).

    CAS  Google Scholar 

  19. M.G. Eriksson, M.D. Ogan, C.T. Peng, C.R. Brasch, and T.N. Tozer, Magn. Reson. Med. 5, 73 (1987).

    Article  CAS  Google Scholar 

  20. M. Sentjurc, D.V. Apte, L. MacAllister, and H.M. Swartz, Curr. Topics in Biophys. 18, 81 (1994).

    CAS  Google Scholar 

  21. H.M. Swartz, M. Sentjurc, and P.D. Morse II Biochim. Biophy. Acta 888, 82 (1986).

    Article  CAS  Google Scholar 

  22. M.J. Nilges, T. Walczak, and H.M. Swartz, Phys. Med. 2, 195 (1989).

    Google Scholar 

  23. A.M. Komarov, J. Joseph, and C.S. Lai, Biochem. Biophys. Res. Commun. 201, 1035 (1994).

    Article  CAS  Google Scholar 

  24. B. Gallez, G. Bacic, F. Goda, J. Jiang, J.A. O’Hara, J.F. Dunn, and H.M. Swartz, Magn. Reson. Med. in press.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goda, F., Gallez, B. & Swartz, H.M. Pharmacokinetics of the nitroxide PCA measured by in vivo EPR. Res. Chem. Intermed. 22, 491–498 (1996). https://doi.org/10.1163/156856796X00692

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1163/156856796X00692

Keywords

Navigation