Skip to main content
Log in

Morphology and photocatalytic activity of TiO2 Aerogels

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

In this paper we describe a methodology to form a data base that will allow us to investigate the correlation between the morphology of Ti?2 aerogels and their photocatalytic activity with respect to photodecomposition of a water soluble organic compound. We start with a qualitative theoretical argument in which we show that any functionality that involves optimization of different length scale should require some kind of ramified structure. For photocatalytic activity we need to optimize substrate and light absorptions with diffusion of products and reactants. We proceed to describe the techniques that we use to analyze and parametrize the morphology of the aerogels, using nitrogen adsorption and Small Angle Neutron Scattering. The photocatalytic activity is monitored through the photodecomposition of salicylic acid. We compare the adsorption and photodegradation of salicylic acid on the aerogels to many other forms of TiO2 and report that under our experimental conditions the photocatalytic activity of the aerogels is superior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Mandelbrot in “The Fractal Geometry of Nature”; W.H. Freeman, NY (1982).

    Google Scholar 

  2. a. D.F. Ollis, E. Pelizzetti, and N. Serpone; Photocatalysis- Fundamentals and Applications, Wiley, Chap. 18, (1989). b. P.V. Kamat in Kinetics and Catalysis in Microheterogeneous Systems, M. Grätzel and K. Kalyanasundaram Eds., Marcel Dekker Inc., New York, 1991. c. D. Bahnemann, D. Bockelmann and R. Goslich; Solar Energy Materials, 24, 564 (1991).

  3. a. D. Avnir, O. Citri, D. Farin, M. Ottolenghi and A. Seri-Levy in “Optimal Structures in Heterogeneous Reaction Systems”, P. J. Plath ed., Springer-Verlag (1990). b. K. Lindenberg, B.J. West and R. Kopelman; Phys. Rev. Lett., 60, 1777 (1988). c. R.M. Ziff, E. Gulari and Y. Barshad; Phys. Rev. Lett., 56, 2553 (1986). d. D. Ben-Avraham, S. Redner, D.B. Considine and P. Meakin; J. Phys. A: Math. Gen., 23, L613 (1990). e. M. Sheintuch and S. Brandon; Chem. Eng. Sci., 44, 69 (1989).

  4. N.B. Jackson, C.M. Wang, Z. Luo, J. Schwitzgebel, J.G. Ekerdt, J.R. Brock, and A. Heller;. J. Electrochem. Soc., 138, 3660 (1991).

    Article  CAS  Google Scholar 

  5. H. Van Damme in ref. 2b., p. 175.

  6. Fuller accounts of various aspects of this work will be found in: a. G. Dagan and M. Tomkiewicz; J. Non-Crystalline Sol. (1993); b. G. Dagan and M. Tomkiewicz; J. Phys. Chem (1993); c. G. Dagan and M. Tomkiewicz in “Environmental Aspects of Electrochemistry and Photoelectrochemistry”, H. Yoneyama and M. Tomkiewicz eds., The Electrochemical Society (1993); d. Z. Zhu, M. Lin, G. Dagan and M. Tomkiewicz, in preparation

  7. S.S. Kisler, J. Phys. Chem., 36, 52 (1932).

    Article  Google Scholar 

  8. S.P. Mukherjee in Ultrastructure Processing of Advanced Ceramics; J.D. Mackenzie, D.R. Ulrich Eds., John Wiley, New York, 1988, Chap. 57..

    Google Scholar 

  9. R.J. Ayen and P.A. Iacobucci, Rev. Chem. Eng., 5, 157 (1988).

    CAS  Google Scholar 

  10. S. J. Teichner, G.A. Nicolaon, M.A. Vicarini, G.E.E. Gardes, Adv. Colloid and Interface Sci., 5, 245 (1976).

    Article  CAS  Google Scholar 

  11. C.J. Brinker, K.J. Ward, K.D. Keefer, E. Holupka, P.J. Bray and R.K. Pearson, —.

    Google Scholar 

  12. S.J. Gregg and K.S.W. Sing, Adsorption, Surface Area and Porosity, Academic Press, NY, (1982).

    Google Scholar 

  13. L.A. Feigin; D.I. Svergun in “Structure Analysis by Small-Angle X-ray and Neutron Scattering”, George W. Taylor ed., Plenum Press, New York (1987)

    Google Scholar 

  14. O.Glatter; O.kratky in “Small Angle X-ray Scattering”, Academic Press, NY, (1982)

    Google Scholar 

  15. G. F. Neilson, J. Appl. Cryst. 6, 386, (1973).

    Article  CAS  Google Scholar 

  16. a. S. Tunesi and M.A. Anderson; J. Phys. Chem., 95, 3399 (1991); b. S. Tunesi and M.A. Anderson; Chemosphere, 16, 1447 (1987).

    Article  CAS  Google Scholar 

  17. J. Moser, S. Punchihewa, P.P. Infelta and M. Grätzel; Langmuir, 7, 3012 (1991).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tomkiewicz, M., Dagan, G. & Zhu, Z. Morphology and photocatalytic activity of TiO2 Aerogels. Res Chem Intermed 20, 701–710 (1994). https://doi.org/10.1163/156856794X00496

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1163/156856794X00496

Keywords

Navigation