Skip to main content
Log in

The contribution of quantum mechanical tunneling to the 1,2-hydrogen rearrangement of methylbromocarbene

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

The rate constants for the 1,2-hydrogen rearrangement of methyl- and methyl-d3-bromocarbene have been determined as a function of temperature. The Arrhenius plots are curved, and the intermolecular isotope effect is small and may increase with increasing temperature. We believe that although the rearrangement proceeds classically at high temperatures, as suggested by theory, quantum mechanical tunneling contributes significantly to the reaction at low temperatures. Alternative explanations are presented and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Kirmse, Carbene Chemistry, Academic Press, New York, 1971.

    Google Scholar 

  2. M. Jones, Jr. and R. A. Moss (Eds.), Carbenes Wiley, New York, 1973.

    Google Scholar 

  3. M. Regitz (Ed.), Methoden der Organischen Chemie (Houben-Weyl), G. Thieme Verlag, Stuttgart, 1989.

    Google Scholar 

  4. R.A. Moss, G-J. Ho, and W. Liu, J. Am. Chem. Soc. 114, 959 (1992).

    Article  CAS  Google Scholar 

  5. R.A. Moss, G-J. Ho, S. Shen, and K. Krogh-Jespersen, J. Am. Chem. Soc. 112, 1638 (1990).

    Article  CAS  Google Scholar 

  6. M.T.H. Liu and R. Bonneau, J. Phvs. Chem. 93, 7298 (1989).

    Article  CAS  Google Scholar 

  7. M.T.H. Liu and R. Bonneau, J. Am. Chem. Soc. 112, 3915 (1990).

    Article  CAS  Google Scholar 

  8. M.T.H. Liu and R. Subramanian, J. Phys. Chem. 90, 75 (1986).

    Article  Google Scholar 

  9. I.D.R. Stevens, M.T.H. Liu, N. Soundararajan, and N. Paike, Tetrahedron Lett. 30, 481 (1989).

    Article  CAS  Google Scholar 

  10. R.A. Moss and G-J. Ho, J. Am. Chem. Soc. 112, 5642 (1990).

    Article  CAS  Google Scholar 

  11. M.H. Sugiyama, S. Celebi, and M.S. Platz, J. Am. Chem. Soc. 114, 966 (1992).

    Article  CAS  Google Scholar 

  12. J.D. Evanseck and K.N. Houk, J. Phys. Chem. 94, 5518 (1990).

    Article  CAS  Google Scholar 

  13. G. Frenking and J. Schmidt, Tetrahedron 40, 2123 (1984).

    Article  CAS  Google Scholar 

  14. R. Krishnan, M.J. Frisch, and J.A. Pople, Chem. Phys. Lett. 79, 408 (1981).

    Article  CAS  Google Scholar 

  15. J.D. Goddard, Chem. Phys. Lett. 84, 609 (1981).

    Article  CAS  Google Scholar 

  16. R.H. Nobes, L. Radom, and W.R. Rodwell, Chem. Phys. Lett. 74, 269 (1980).

    Article  CAS  Google Scholar 

  17. H.F. Schaefer, III, Acc. Chem. Res. 12, 288 (1979).

    Article  CAS  Google Scholar 

  18. C.E. Dykstra, H.F. Schaefer, III, and W. Meyer, J. Chem. Phys. 65, 2740 (1976).

    Article  CAS  Google Scholar 

  19. V. Menendez and J.M. Figuera, Chem Phys. Lett. 18, 426 (1973).

    Article  CAS  Google Scholar 

  20. Y. Osamura, H.F. Schaefer, III, S.K. Gray, and W.H. Miller, J. Am. Chem. Soc. 103, 1904 (1981).

    Article  CAS  Google Scholar 

  21. G.A. Petersson, T.G. Tensfeldt, and J.A. Montgomery, J. Am. Chem. Soc. 114, 6133 (1992).

    Article  CAS  Google Scholar 

  22. E.J. Dix, M.S. Herman, and J.L Goodman, J. Am. Chem. Soc. 115, 10424 (1993).

    Article  CAS  Google Scholar 

  23. J.A. LaVilla and J.L Goodman, J. Am. Chem. Soc. 111, 6877 (1989).

    Article  CAS  Google Scholar 

  24. J.A. LaVilla and J.L Goodman, Tetrahedron Lett. 31, 5109 (1990).

    Article  CAS  Google Scholar 

  25. R.A. Moss and A. Mamantov, J. Am. Chem. Soc. 92 6951 (1970).

    Article  CAS  Google Scholar 

  26. M.T.H. Liu and R. Bonneau, J. Am. Chem. Soc. 111, 6873 (1989).

    Article  CAS  Google Scholar 

  27. J.E. Jackson, N. Soundararajan, M.S. Platz, and M.T.H. Liu, J. Am. Chem. Soc. 110, 5595 (1988).

    Article  CAS  Google Scholar 

  28. D.A. Modarelli, S. Morgan, and M.S. Platz, J. Am. Chem. Soc. 114, 7034 (1992) and references therein.

    Article  CAS  Google Scholar 

  29. D.A. Modarelli and M.S. Platz, J. Am. Chem. Soc. 113, 8984 (1991).

    Article  Google Scholar 

  30. See S.T. Belt, C. Bohne, G. Charette, S.E. Sugamori, and J.C. Scaiano, J. Am. Chem. Soc. 115, 2200 (1993) for a similar kinetic analysis.

    Article  CAS  Google Scholar 

  31. R.A. Moss, G-J. Ho, W. Liu, and C. Sierakowski, Tetrahedron Lett. 34, 927 (1993).

    Article  CAS  Google Scholar 

  32. R.A. Moss, G-J. Ho, W. Liu, and C. Sierakowski Tetrahedron Lett. 33, 4287 (1992).

    Article  CAS  Google Scholar 

  33. J. Storer and K.H. Houk, J. Am. Chem. Soc. 115, 10426 (1993).

    Article  CAS  Google Scholar 

  34. M.T.H. Liu and R. Bonneau, J. Am. Chem. Soc. 112, 3915 (1990).

    Article  CAS  Google Scholar 

  35. M.T.H. Liu and R. Subramanian, J. Phys. Chem. 90, 75 (1986).

    Article  CAS  Google Scholar 

  36. D.G. Truhlar and B.C. Garrett, Acc. Chem. Res. 13, 440 (1980).

    Article  CAS  Google Scholar 

  37. D.G. Truhlar, W.L. Hase, and J.T. Hynes, J. Phys. Chem. 87, 2664 (1983).

    Article  CAS  Google Scholar 

  38. M.M. Kreevoy and D.G. Truhlar, Investigations of Rates and Mechanisms of Reactions, Wiley, New York, 1986, Vol. 6, p. 13.

    Google Scholar 

  39. K.N. Houk, N.G. Rondan, and J. Mareda, J. Am. Chem. Soc. 106, 4291 (1984).

    Article  CAS  Google Scholar 

  40. K.N. Houk, N.G. Rondan, and J. Mareda, Tetrahedron 41, 1555 (1985).

    Article  CAS  Google Scholar 

  41. J.F. Blake, S.G. Wierschke, and W.L. Jorgensen, J. Am. Chem. Soc. 111, 1919 (1989).

    Article  CAS  Google Scholar 

  42. M.S. Platz. In: Kinetics and Spectroscopy of Carbenes and Biradicals, M.S. Platz (Ed.), p. 143, Plenum, New York (1990).

    Google Scholar 

  43. W.H. Graham, J. Am. Chem. Soc. 87, 4396 (1965).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dix, E.J., Goodman, J.L. The contribution of quantum mechanical tunneling to the 1,2-hydrogen rearrangement of methylbromocarbene. Res. Chem. Intermed. 20, 149–157 (1994). https://doi.org/10.1163/156856794X00162

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1163/156856794X00162

Keywords

Navigation