Skip to main content
Log in

A VB model of transition structure regions of the potential energy surfaces for forbidden and allowed cycloaddition reactions

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

The MC-SCF potential energy surfaces for the 2 + 2 cycloaddition of two ethylenes, the 4 + 2 cycloaddition of butadiene and ethylene and the 1,3 dipolar cycloaddition of fulminic acid and acetylene are modelled using the coulomb and exchange integrals of Heitler-London VB theory. The VB parameters reproduce the MC-SCF results exactly by virtue of their construction using effective Hamiltonian theory. The origin of the critical points and the magnitude of their activation barriers can thus be rationalized in terms of an analysis along the reaction coordinate, while the nature of the critical points is discussed with respect to normal modes that exclude the reaction coordinate. The computed results provide some understanding of the reason why certain transition structures exist for one cycloaddition and not for others.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. CNR post-doctoral fellow at Kingss College London.

  2. H.P. Lawley (Ed.), Ab Initio Methods in Quanuum Chemistry I, Adv. Chem. Phys., 67(1987).

  3. K.P. Lawley (Ed.), Ab Initio Methoss in Quanuum Chemistry II, Adv. Chem. Phys., 69(1987).

  4. R.B Woodward and R. Hoffman, Angew. Chem. Int. Ed. Engl., 8(1969)781.

    Article  CAS  Google Scholar 

  5. N.D. Epiotis, Theory of Organic Reactions. Springer Verlag, Heidelberg, 1978.

    Google Scholar 

  6. N.D. Epiotis, Lect. Notes Chem., 29(1982).

  7. N.D. Epiotis, Lect. Notes Chem., 34(1983).

  8. S.S. Shaik, J. Am. Chem. Soc, 103(1981)3692.

    Article  CAS  Google Scholar 

  9. A. ProBS and S.S. Shaik. Acc. Chem. Res., 16(1983)363.

    Article  Google Scholar 

  10. S.S. Shaik, Prog. Phys. Org. Chem., 15(1985)197.

    Article  CAS  Google Scholar 

  11. A. Pross, Adv. Phys. Org. Chem., 21(1985)99.

    Article  CAS  Google Scholar 

  12. F. Bernardi and M.A. Robb, Mol. Phys., 48(1983)1345.

    Article  CAS  Google Scholar 

  13. F. Bernardi and M.A. Robb, J. Am. Chem. Soc, 106(1984)54.

    Article  CAS  Google Scholar 

  14. F. Bernardi, M. Olivucci, M.A. Robb, and G.J. Tonachini, Am. Chem. Soc, 108(1986)1408.

    Article  CAS  Google Scholar 

  15. F. Bernardi and M.A. Robb, Adv. Chem. Phys., 67(1987)15.

    Google Scholar 

  16. F. Bernardi, M. Olivucci, J.J.W. McDouall, and M.A. Robb, J. Chem. rnys., 89(1988)6365.

    Article  CAS  Google Scholar 

  17. G. Evans and M. Polany, Trans. Far. Soc, 34(1938)11.

    Article  CAS  Google Scholar 

  18. G. Evans and E. Warhurst, Trans. Far. Soc, 34(1938)614.

    Article  CAS  Google Scholar 

  19. P. Durand and J.P. Malrieu, Adv. Chem. Phys., 67(1987)321.

    Article  CAS  Google Scholar 

  20. P.G. Mezey, Optimization and Analysis of Energy Hypersurfaces in Computational Theoretical Organic Chemistry. Reidel Publishing Compan., New York, 1981.

    Google Scholar 

  21. R. McWeeny and B. Sutcliffe, Methoss of Quanuum Mechanics. Academic, New York, 1969.

    Google Scholar 

  22. H. Eyring, J. Walter, and G. Kimball, Quanuum Chemistry. Wiley, New York, 1944.

    Google Scholar 

  23. W.J. Hehre, R. F. Stewart, and J.A. Pople, J. Chem. Phys., 51(1969)2657.

    Article  CAS  Google Scholar 

  24. R. Ditchfield, W.J. Hehre, and J.A. Pople, J. Chem. Phys., 54(1971)724.

    Article  CAS  Google Scholar 

  25. J. Binkley, M. Frisch, K. Raghavachan, D. De Frees, H.B Schleger, R. Whiteside, E. Fluder, R. Seeger, and J.A. Pople. GAUSSIAN 82. Carnegee Mellon University, Pittsburgh, P.A.

  26. (a) D. Hegaryy and M.A Robb, Mol. Phys., 38(1979)1795; (b) M.A. Robb, and R.H.A Eade, Nato Adv. Study Int. Ser. C, 67(1981)21.

    Article  Google Scholar 

  27. (a) H.B. Schlegel and M. A. Robb, Chem. Phys. Lett., 93(1982)43; (b) H.B. Schlegel and M.A. Robb, to be published.

    Article  CAS  Google Scholar 

  28. F. Bernardi, A. Bottoni, M.A. Robb, H.B. Schleger, and G. Tonachini, J. Am. Chem. Soc, 107(1985)2260.

    Article  CAS  Google Scholar 

  29. J.J.W. McDouall, M.A. Robb, U. Niazi, F. Bernardi, and H.B. Schlegel, J. Am.Chem.Soc, 109(1987)46.

    Article  Google Scholar 

  30. F. Bernardi, A. Bottoni, M.J. Field, M.F. Guest, I.H. Hillier, M.A. Robb, and A. Ventunni, J. Am. Chem. Soc, 110(1988)3050.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bernardi, F., Olivucci, M. & Robb, M.A. A VB model of transition structure regions of the potential energy surfaces for forbidden and allowed cycloaddition reactions. Res Chem Intermed 12, 217–249 (1989). https://doi.org/10.1163/156856789X00267

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1163/156856789X00267

Keywords

Navigation