Skip to main content
Log in

Transition state structure of the reaction of homolytic dissociation of the C-N bond and competition between dif erent mechanisms of the primary act of gas-phase monomolecular decomposition of nitrobenzene

  • Full Article
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

Various mechanisms of the primary act of gas-phase monomolecular thermal decomposition of nitrobenzene were studied theoretically. The following reactions were considered: radical decomposition with dissociation of the C-N bond, nitro-nitrite rearrangement to trans-phenyl nitrite and cis-phenyl nitrite, elimination of nitrous acid, as well as formation of 6(S)-7-oxa-8-azabicyclo[4.2.0]octa-1(8),2,4-triene 8-oxide were studied theoretically. Calculations were carried out for different temperatures using a number of density functional theory methods (B3LYP, wB97XD, CAM-B3LYP, MN12L, and PBE0) and basic sets (6-31G(d,p) and 6-31+G(2df,p)). The transition state of homolytic dissociation of the C-N bond was localized using the method of search for the structure corresponding to maximum value of the Gibbs free energy along the reaction coordinate. The structure thus found was used to evaluate the rate constants and the activation parameters at different temperatures. It was shown that not only radical decomposition, but also isomerization to trans-phenyl nitrite (at low temperatures) and cis-phenyl nitrite (at high temperatures) can contribute to the effective rate constant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. T. Soldatenkov, Le Tuan Anh, Hieu Hong Truong, Osnovy organicheskoy khimii vysokoenergeticheskikh veshchestv i materialov [Foundations of Organic Chemistry of Energetic Substances and Materials], Knowledge Publishing House, Hanoi, 2013, 21 pp. (in Russian).

    Google Scholar 

  2. A. F. Ilyushchenko, E. E. Petyushik, A. L. Rak, S. L. Evmenenko, T. A. Molodyakova, Primenenie v promy shlennosti vysokoenergeticheskikh vzryvchatykh veshchestv: spravochnoe posobie [Industrial Applications of High-Energy Explosives: A Handbook], Belaruskaya Navuka, Minsk, 2017, 283 pp. (in Russian).

    Google Scholar 

  3. R. S. Stepanov, L. A. Kruglyakova, A. M. Astakhov, Comb. Explos. Shock Waves (Engl. Transl.), 2006, 42, 63.

    Article  Google Scholar 

  4. Yu. Ya. Maksimov, J. Phys. Chem. USSR (Engl. Transl.), 1969, 43, 386.

    Google Scholar 

  5. Yu. A. Lebedev, E. A. Miroshnichenko, Yu. K. Knobel, Termokhimiya nitrosoedineniy [Thermochemistry of Nitro Compounds], Nauka, Moscow, 1970, 168 pp. (in Russian).

    Google Scholar 

  6. V. G. Matveev, G. M. Nazin, Bull. Acad. Sci. USSR, Div. Chem. Sci. (Engl. Transl.), 1975, 24, 697.

    Article  Google Scholar 

  7. V. G. Matveev, V. V. Dubikhin, G. M. Nazin, Bull. Acad. Sci. USSR, Div. Chem. Sci. (Engl. Transl.), 1978, 27, 675.

    Article  Google Scholar 

  8. E. Yu. Orlova, Khimiya I tekhnologiya brizantnykh vzryvcha-tykh veshcnestv. Uchebmik dlya vuzov [Chemistry and Technology of Disruptive Explosives. A Textbook], Khimiya, Leningrad, 1981, 312 pp. (in Russian).

    Google Scholar 

  9. I. F. Shis hkov, N. I. Sadova, V. P. Novikov, L. V. Vilkov, J. Struct. Chem., 1984, 25, 260.

    Article  Google Scholar 

  10. A. C. Gonzalez, C. W. Larson, D. F. McMillen, D. M. Golden, J. Phys. Chem., 1985, 89, 4809.

    Article  CAS  Google Scholar 

  11. W. Tsang, D. Robaugh, W.G. Mallard, J. Phys. Chem., 1986, 90, 5968.

    Article  CAS  Google Scholar 

  12. V. A. Koroban, Yu. Ya. Maksimov, Kinet. Catal. (Engl. Transl.), 1990, 31, 677.

    Google Scholar 

  13. T. B. Brill, K. James, Chem. Rev., 1993, 93, 2667.

    Article  CAS  Google Scholar 

  14. G. B. Manelis, G. M. Nazin, Yu. I. Rubtsov, V. A. Strunin, Termicheskoe razlozhenie i gorenie vzryvchatykh veshchestv i porokhov [Thermal Decomposition and Combustion of Ex-plo siv es and Propellants], Nauka, Moscow, 1996, 223 pp. (in Russian).

    Google Scholar 

  15. G. M. Khrapkovskii, G. N. Marchenko, A. G. Shamov, Vliyanie molekulyarnoy struktury na kineticheskie parametry monomolekulyarnogo raspada C- i O-nitrosoedineniy [Molecular Structure Ef ect on the Kinetic Parameters of Mono-molecular Decom positio of C-Nitro and O-Nitro Compounds], FEN, Kazan, 1997, 222 pp. (in Russian).

    Google Scholar 

  16. Y. Ohno, M. Kouno, S. Kawaguchi, Y. Akutsu, M. Arai, M. Tamura, J. Japan Explos. Soc., 1997, 58, 277.

    Google Scholar 

  17. V. M. Vinogradov, I. L. Dalinger, A. M. Starosotnikov, S. A. Shevelev, Russ. Chem. Bull. (Int. Ed.), 2001, 50, 464.

    Article  CAS  Google Scholar 

  18. I. L. Dalinger, T. I. Cherkasova, S. S. Vorob'ev, A. V. Aleksandrov, G. P. Popova, S. A. Shevelev, Russ. Chem. Bull. (Int. Ed.), 2001, 50, 2401.

    Article  CAS  Google Scholar 

  19. O. V. Serushkina, M. D. Dutov, A. N. Solkan, S. A. Shevelev, Russ. Chem. Bull. (Int. Ed.), 2001, 50, 2406.

    Article  CAS  Google Scholar 

  20. S. A. Shevelev, I. L. Dalinger, T. I. Cherkasova, Tetrahedron Lett., 2001, 42, 8539.

    Article  CAS  Google Scholar 

  21. V. A. Tartakovskii, S. A. Shevelev, M. D. Dutov, O. V. Serushkina, V. V. Kachala, Russ. J. Org. Chem., 2003, 38, 397.

    Article  Google Scholar 

  22. J. Clarkson, W. Ewen Smith, J. Mol. Struct., 2003, 655, 413.

    Article  CAS  Google Scholar 

  23. A. L. Rusanov, L. G. Komarova, D. Yu. Likhatchev, S. A. Shevelev, V. A. Tartakovsky, Russ. Chem. Rev., 2003, 72, 899.

    Article  CAS  Google Scholar 

  24. M.-F. Lin, Yu. T. Lee, Ch.-K. Ni, Sh. Xu, M. C. Lin, J. Chem. Phys., 2007, 126, 064310.

    Article  CAS  PubMed  Google Scholar 

  25. O. V. Dorofeeva, N. F. Moiseeva, Russ. J. Phys. Chem., 2008, 82, 136.

    Article  CAS  Google Scholar 

  26. G. M. Khrapkovskii, A. G. Shamov, E. V. Nikolaeva, D. V. Chachkov, Russ. Chem. Rev., 2009, 78, 903.

    Article  CAS  Google Scholar 

  27. V. L. Korolev, T. S. Pivina, A. B. Sheremetev, A. A. Porollo, T. V. Petukhova, V. P. Ivshin, Russ. Chem. Rev., 2009, 78, 945.

    Article  CAS  Google Scholar 

  28. V. V. Nedel'ko, B. L. Korsunskii, N. N. Makhova, N. V. Chukanov, T. S. Larikova, I. V. Ovchinnikov, V. A. Tartakov-sky, Russ. Chem. Bull. (Int. Ed.), 2009, 58, 2028.

    Article  CAS  Google Scholar 

  29. L. P. Smirnov, Russ. Chem. Rev., 79, 421.

  30. V. G. Matveev, Russ. J. Phys. Chem. B, 2010, 4, 719.

    Article  Google Scholar 

  31. M. H. Keshavarz, J. Hazardous Mat., 2011, 190, 330.

    Article  CAS  Google Scholar 

  32. S. P. Korolev, O. V. Kondrashina, D. S. Druzhilovsky, A. M. Starosotnikov, M. V. Dutov, M. A. Bastrakov, I. L. Dalinger, D. A. Filinov, S. A. Shevelev, V. V. Poroikov, Y. Y. Agapkina, M. B. Gottikh, Acta Naturae, 2013, 5, 63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. J. Li, H. Liu, X. Huo, P. Gramatica, Mol. Inf., 2013, 32, 193.

    Article  CAS  Google Scholar 

  34. R. V. Tsyshevsky, O. Sharia, M. M. Kuklja, Molecules, 2016, 21, 236.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. S. P. Korolev, M. A. Pustovarova, A. M. Starostnikov, M. A. Bastrakov, Yu. Yu. Agapkina, S. A. Shevelev, M. B. Gottikh, Biochemistry (Moscow), Sup. Ser. B: Biomed. Chem. (Engl. Transl.), 2017, 11, 286.

    Article  Google Scholar 

  36. Y. Peng, X. Xiu, G. Zhu, Y. Yang, J. Phys. Chem. A, 2018, 122, 8336; DOI: 10.1021/acs.jpca.8b06458.

    Article  CAS  PubMed  Google Scholar 

  37. G. M. Khrapkovskii, E. A. Ermakova, V. A. Rafeev, Russ. Chem. Bull. (Int. Ed.), 1994, 43, 1999.

    Article  Google Scholar 

  38. G. M. Khrapkovskii, E. V. Nikolaeva, D. V. Chachkov, A. G. Shamov, Russ. J. Gen. Chem., 74, 908.

  39. O. V. Dorofeeva, M. A. Suntsova, I. I. Marochkin, Gorenie i vzryv [Combustion and Explosion], 2013, 6, 243 (in Russian).

    Google Scholar 

  40. O. V. Dorofeeva, Yu. V. Vishnevskiy, N. Vogt, J. Vogt, L. V. Khristenko, S. V. Krasnoshchekov, I. F. Shishkov, I. Hargittai, L. V. Vilkov, J. Struct. Chem., 2007, 18, 739.

    Article  CAS  Google Scholar 

  41. S. P. Verevkin, V. N. Emel'yanenko, V. Diky, O. V. Dorofe-eva, J. Chem. Thermodynamics, 2014, 73, 163.

    Article  CAS  Google Scholar 

  42. O. V. Dorofeeva, M. A. Suntsova, J. Chem. Thermodynamics, 2013, 58, 221.

    Article  CAS  Google Scholar 

  43. E. A. Mirochnicheno, T. S. Kon'kova, Y. N. Matyushin, A. A. Berlin, L. L. Pashchenko, Russ. Chem. Bull. (Int. Ed.), 2016, 65, 1977.

    Article  CAS  Google Scholar 

  44. A. S. Smirnov, T. S. Pivina, Gorenie i vzryv [Combustion and Explosion], 2016, 9, Issue 3, 140 (in Russian).

    Google Scholar 

  45. A. S. Smirnov, S. P. Smirnov, T. S. Pivina, D. B. Lempert, L. K. Maslova, Russ. Chem. Bull. (Int. Ed.), 2016, 65, 2315.

    Article  CAS  Google Scholar 

  46. D. L. Egorov, A. G. Shamov, G. M. Khrapkovskii, Vestn. tekhnol. un-ta [Herald of Kazan Technological University], 2015, 8, Issue 21, 12 (in Russian).

    Google Scholar 

  47. V. V. Turovtsev, Yu. D. Orlov, Russ. J. Phys. Chem. B, 2014, 8, 464.

    Article  CAS  Google Scholar 

  48. IC No. 2011613791; Byul. izobret. [Bull. Invent.], 2011 (in Russian).

    Google Scholar 

  49. S. K. Ignatov, Moltran v.2.5 — programma molekulyuarnoy vizualizatsii i termodinamicheskikh raschetov [Moltran Version 2.5, a Program for Molecular Visualization and Thermodynamic Calculations], Nizhny Novgorod University, 2004; http://www.qchem.unn.ru/moltran/.

    Google Scholar 

  50. F. Visentin, H. Briggeler, O. Ubrich, Hydrogenation of Nitrobenzene to Aniline, Mettler-Toledo Auto Chem Inc., Print. Switz. Marketing RC/ALR, MD 21046, 2007, 3, 7 pp.

    Google Scholar 

  51. Sh. Yamabe, Sh. Yamazaki, J. Phys. Org. Chem., 2016, 29, 361.

    Article  CAS  Google Scholar 

  52. I. A. Gorbunov, S. E. Latyshova, E. A. Chaplyuk, Molodoy uchenyj [Young Scientist], 2018, 17, 15 (in Russian).

    Google Scholar 

  53. G. M. Khrapkovskii, E. V. Nikolaeva, D. L. Egorov, D. V. Chachkov, A. G. Shamov, Russ. J. Org. Chem., 2016, 52, 791.

    Article  CAS  Google Scholar 

  54. G. M. Khrapkovskii, E. V. Nikolaeva, D. L. Egorov, D. V. Chachkov, A. G. Shamov, Russ. J. Org. Chem., 2017, 53, 999.

    Article  CAS  Google Scholar 

  55. A. G. Turner, L. P. Davis, J. Am. Chem. Soc., 1984, 106, 5447.

    Article  CAS  Google Scholar 

  56. P. C. Chen, W. Lo, K. H. Hu, J. Mol. Struct. (Theochem), 1997, 389, 91.

    Article  CAS  Google Scholar 

  57. P. C. Chen, W. Lo, J. Mol. Struct. (Theochem), 1997, 397, 21.

    Article  CAS  Google Scholar 

  58. Energii razryva khimicheskikh svyazey, potentsialy ionizatsii i srodstvo k elektronu [A Handbook on Chemical Bond Dissociation Energies, Ionization Potentials, and Electron Af nities.], Eds L. V. Gurvich, G. V. Karachevtsev, V. I. Kondratyev, Yu. A. Lebedev, V. A. Medvedev, V. K. Panov, Yu. S. Khodeev, Nauka, Moscow, 1974, 351 pp. (in Russian).

  59. P. C. Chen, S. C. Chen, Computers & Chemistry, 2002, 26, 171.

    Article  CAS  Google Scholar 

  60. P. C. Chen, Y. C. Chieh, J. Mol. Struct. (Theochem), 2002, 583, 173.

    Article  CAS  Google Scholar 

  61. T. Glenewinkel-Meyer, F. F. Crim, J. Mol. Struct. (Theochem), 1995, 337, 209.

    Article  CAS  Google Scholar 

  62. D. D. Sharipov, D. L. Egorov, A. G. Shamov, G. M. Khrap-kovskii, D. V. Chachkov, Russ. J. Gen. Chem., 2011, 81, 2273.

    Article  CAS  Google Scholar 

  63. G. M. Khrapkovskii, D. D. Sharipov, A. G. Shamov, D. L. Egorov, D. V. Chachkov, R. V. Tsyshevsky, Comput. Theor. Chem., 2013, 1011, 37.

    Article  CAS  Google Scholar 

  64. G. M. Khrapkovskii, D. D. Sharipov, A. G. Shamov, D. L. Egorov, D. V. Chachkov, Nguyen Van Bo, R. V. Tsyshevsky, Comput. Theor. Chem., 2013, 1017, 7.

    Article  CAS  Google Scholar 

  65. B. L. Korsunskii, G. M. Nazin, V. R. Stepanov, A. A. Fedotov, Kinet. Catal. (Engl. Transl.), 1993, 34, 691.

    Google Scholar 

  66. L. Cooper, L. G. Shpinkova, E. E. Rennie, D. M. P. Holland, D. A. Shaw, Int. J. Mass. Spectrom., 2001, 207, 223.

    Article  CAS  Google Scholar 

  67. Sh. Xu, M. C. Lin, J. Phys. Chem. B., 2005, 109, 8367.

    Article  CAS  PubMed  Google Scholar 

  68. C. Kosmidis, K. W. D. Ledingham, A. Clark, A. Marshall, R. Jennings, J. Sander, R. P. Singhal, Int. J. Mass Spectrom. Ion Proc., 1994, 135, 229.

    Article  CAS  Google Scholar 

  69. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghava-chari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09, Gaussian, Inc., Wallingford CT, 2009.

    Google Scholar 

  70. E. V. Nikolaeva, A. G. Shamov, G. M. Khrapkovskii, Kh. E. Kharlampidi, Russ. J. Gen. Chem., 2002, 72, 748.

    Article  CAS  Google Scholar 

  71. E. V. Nikolaeva, D. V. Chachkov, A. G. Shamov, G. M. Khrapkovskii, Russ. Chem. Bull. (Int. Ed.), 2018, 67, 274.

    Article  CAS  Google Scholar 

  72. G. M. Khrapkovskii, A. G. Shamov, R. V. Tsyshevsky, D. V. Chachkov, D. L. Egorov, I. V. Aristov, Comput. Theor. Chem., 2011, 966, 265.

    Article  CAS  Google Scholar 

  73. A. G. Shamov, E. V. Nikolaeva, G. M. Khrapkovskii, Russ. J. Appl. Chem., 2009, 82, 1741.

    Article  CAS  Google Scholar 

  74. G. G. Garifzianova, R. V. Tsyshevskii, A. G. Shamov, G. M. Khrapkovskii, Int. J. Quant. Chem., 2007, 107, 2489.

    Article  CAS  Google Scholar 

  75. S. Ya. Umanskii, Teoriya elementarnykh khimicheskikh reaktsiy [Theory of Elementary Chemical Reactions], Intellekt, Moscow, 2009, 408 pp. (in Russian).

    Google Scholar 

  76. D. G. Truhlar, B. C. Garett, Ann. Rev. Phys. Chem., 1984, 35, 159.

    Article  CAS  Google Scholar 

  77. D. G. Truhlar, B. C. Garett, S. J. Klippenstein, J. Phys. Chem., 1996, 100, 12771.

    Article  CAS  Google Scholar 

  78. S. H. Robertson, A. F. Wagner, D. M. Wardlaw, J. Chem. Phys., 1995, 103, 2917.

    Article  CAS  Google Scholar 

  79. A. Kuwae, K. Machida, Spectrochim. Acta, 1979, 35, 27.

    Article  Google Scholar 

  80. J. D. Laposa, Spect rochim. Acta, 1979, 35, 65.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Nikolaeva.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikolaeva, E.V., Egorov, D.L., Chachkov, D.V. et al. Transition state structure of the reaction of homolytic dissociation of the C-N bond and competition between dif erent mechanisms of the primary act of gas-phase monomolecular decomposition of nitrobenzene. Russ Chem Bull 68, 1510–1519 (2019). https://doi.org/10.1007/s11172-019-2585-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-019-2585-1

Key words

Navigation