Skip to main content
Log in

Influence of Zn(II) adsorption on the photocatalytic activity and the production of H2O2 over irradiated TiO2

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

The photocatalytic activity of semiconductor oxides, in particular TiO2 powders or colloids, is a complex function of bulk (light absorption and scattering, charge carrier mobility and recombination rate) and surface (structure, defects and reconstruction, charge, presence of adsorbate, surface recombination centers) properties. Among surface modifications, the inner sphere surface complexation of metal cations can change the surface charge of the metal oxide, thus changing the surface activity coefficient of ionic substrates, the band edge positions, as well as the mechanism and kinetic of interfacial electron transfer by blocking surface trapping sites for photogenerated carriers (≡Ti−OH). In this work we show that in anatase/water systems under band-gap irradiation, both the organic substrate (formate) oxidation initiated by photogenerated valence band holes and the formation of hydrogen peroxide from O2 reduction (by conduction band electrons) is strongly influenced by the presence of Zn2+ cations. Depending on the pH, the formate oxidation rate can be enhanced or nearly completely inhibited. The observed result can be rationalized by considering the fraction of ≡Ti−OH surface sites blocked by inner sphere complexation of Zn2+ as a function of pH. When this fraction is low, the more positive surface charge favors formate oxidation, whereas when the fraction is high the almost complete blockage of ≡Ti−OH surface sites by Zn2+ stops almost entirely formate oxidation. Interestingly, the surface complexation of Zn2+ is accompanied by an increasing production of H2O2 during formate degradation in the presence of O2. Zn(II) cations are not complexed by peroxide/superoxide species derived from O2 reduction. When ≡Ti−OH sites are blocked by Zn2+, the complexation on the TiO2 surface of peroxide/superoxide species is inhibited, hindering their further transformation. The results presented demonstrate that the combined effect of pH and surface complexation of redox inert cations greatly influences both the oxidative and reductive processes during the photocatalytic process over TiO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Minero, V. Maurino and E. Pelizzetti, Mol. Photochem. Photophys. 10, 211 (2003).

    CAS  Google Scholar 

  2. A. Fujishima, T. N. Rao and D. A. Tryk, J. Photochem. Photobiol. C: Photochem. Rev. 1, 1 (2000).

    Article  CAS  Google Scholar 

  3. M. R. Hoffmann, S. T. Martin, W. Choi and D. W. Bahnemann, Chem. Rev. 95, 69 (1995).

    Article  CAS  Google Scholar 

  4. O. Carp, C. L. Huisman and A. Reller, Prog. Solid State Chem. 32, 35 (2004).

    Article  Google Scholar 

  5. C. Minero, V. Maurino and E. Pelizzetti, Res. Chem. Intermed. 23, 291 (1997).

    Article  Google Scholar 

  6. C. Minero, Catal. Today 54, 205 (1999).

    Article  CAS  Google Scholar 

  7. T. Umebayashi, T. Yamaki, H. Itoh and K. Asai, J. Phys. Chem. Solids 63, 1909 (2002).

    Article  CAS  Google Scholar 

  8. M. Anpo and M. Takeuchi, J. Catal. 216, 505 (2003).

    Article  CAS  Google Scholar 

  9. M. Anpo, S. Kishiguchi, Y. Ichihashi, M. Takeuchi, H. Yamashita, K. Ikeue, B. Morin, A. Davidson and M. Che, Res. Chem. Intermed. 27, 459 (2001).

    Article  CAS  Google Scholar 

  10. G. Mele, R. del Sole, G. Vasapollo, E. Garcia-Lopez, L. Palmisano and M. Schiavello, J. Catal. 217, 354–342 (2003).

    Google Scholar 

  11. A. di Paola, E. Garcia-Lopez, G. Marcì, C. Martin, L. Palmisano, V. Rives and A. M. Venezia, Appl. Catal. B: Environ. 48, 223 (2004).

    Article  Google Scholar 

  12. M. D. Driessen and V. H. Grassian, J. Phys. Chem. B 102, 1418 (1998).

    Article  CAS  Google Scholar 

  13. P. V. Kamat, M. Flumiani and A. Dawson, Colloid Surface A 202, 269 (2002).

    Article  CAS  Google Scholar 

  14. K. Vinodgopal and P. V. Kamat, Environ. Sci. Technol. 29, 841 (1995).

    Article  CAS  Google Scholar 

  15. C. A. Emilio, J. J. Testa, D. Hufschmidt, G. Colon, J. A. Navio, D. W. Bahnemann and M. I. Litter, J. Ind. Eng. Chem. 10, 129 (2004).

    CAS  Google Scholar 

  16. G. Marcì, V. Augugliaro, M. J. Lopez-Munoz, C. Martin, L. Palmisano, V. Rives, M. Schiavello, R. D. Tilley and A. M. Venezia, J. Phys. Chem. B 105, 1026 (2001).

    Article  Google Scholar 

  17. W. Stumm, Chemistry of the Solid-Water Interface. Wiley-Interscience, New York, NY (1995).

    Google Scholar 

  18. D. A. Dzombak and F. M. M. Morel, Surface Complexation Modeling. Wiley-Interscience, New York, NY (1990).

    Google Scholar 

  19. R. O. James and T. W. Healy, J. Colloid Interface Sci. 40, 53 (1972).

    Article  CAS  Google Scholar 

  20. B. P. Nelson, R. Candal, R. M. Corn and M. A. Anderson, Langmuir 16, 6094 (2000).

    Article  CAS  Google Scholar 

  21. M. Graetzel, in E. Pelizzetti and N. Serpone (Eds), Photocatalysis: Fundamentals and Applications, p. 123, Wiley-Interscience, New York, NY (1989).

    Google Scholar 

  22. M. Abdullah, G. K.-C. Low and R. W. Matthews, J. Phys. Chem. 94, 6820 (1990).

    Article  CAS  Google Scholar 

  23. C. Minero, G. Mariella, V. Maurino and E. Pelizzetti, Langmuir 16, 2632 (2000).

    Article  CAS  Google Scholar 

  24. C. Minero, G. Mariella, V. Maurino, D. Vione and E. Pelizzetti, Langmuir 16, 8964 (2000).

    Article  CAS  Google Scholar 

  25. V. Maurino, C. Minero, G. Mariella and E. Pelizzetti, Chem. Commun., 2627 (2005).

  26. Z. Zhang, P. Fenter, L. Cheng, N. C. Sturchio, M. J. Bedzyk, M. Predota, A. Bandura, O. J. D. Kubicki, S. N. Lvov, P. T. Cummings, A. A. Chialvo, M. K. Ridley, P. Benezeth, L. Anovitz, D. A. Palmer, M. L. Machesky and D. J. Wesolowski, Langmuir 20, 4954 (2004).

    Article  CAS  Google Scholar 

  27. J. K. Yang and A. P. Davis, J. Colloid Interface Sci. 216, 77 (1999).

    Article  CAS  Google Scholar 

  28. M. I. French, J. Peral, X. Domenech and J. A. Ayllon, Chem. Commun., 1851 (2005).

  29. D. Fabbri, A. Bianco Prevot and E. Pramauro, Appl. Catal. B: Environ. 62, 21 (2006).

    Article  CAS  Google Scholar 

  30. A. Di Paola, V. Augugliaro, L. Palmisano, G. Pantaleo and E. Savinov, J. Photochem. Photobiol. A: Chem. 155, 207 (2003).

    Article  Google Scholar 

  31. J. E. Frew, P. Jones and G. Scholes, Anal. Chim. Acta 155, 139 (1983).

    Article  CAS  Google Scholar 

  32. K. D. Dobson and A. J. McQuillan, Spectrochim. Acta Part A 55, 1395 (1999).

    Article  Google Scholar 

  33. Y. Sun and J. J. Pignatello, Environ. Sci. Technol. 29, 2065 (1995).

    Article  CAS  Google Scholar 

  34. R. M. Smith and A. E. Martell, NIST Critically Selected Stability Constant of Metal Complexes, Reference Database 46 Ver. 6.0 US Department of Commerce, National Institute of Standards and Technology, Gaithersburg, MD (2001).

    Google Scholar 

  35. C. Minero, F. Catozzo and E. Pelizzetti, Langmuir 8, 481 (1992).

    Article  CAS  Google Scholar 

  36. A. Vittadini, A. Selloni, F. P. Rotzinger and M. Graetzel, Phys. Rev. Lett. 14, 2954 (1998).

    Article  Google Scholar 

  37. M. S. Vohra and A. P. Davis, J. Colloid Interface Sci. 194, 59 (1997).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valter Maurino.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maurino, V., Minero, C., Pelizzetti, E. et al. Influence of Zn(II) adsorption on the photocatalytic activity and the production of H2O2 over irradiated TiO2 . Res. Chem. Intermed. 33, 319–332 (2007). https://doi.org/10.1163/156856707779238711

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1163/156856707779238711

Keywords

Navigation