Skip to main content
Log in

Structural and photocatalytic properties of the new solid photocatalyst In2BiTaO7

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

In2BiTaO7 was synthesized using the solid-state reaction method and its photocatalytic properties were investigated. The results of powder X-ray diffraction (XRD) indicated that the compound crystallizes in the pyrochlore-type structure, cubic system with space group Fd-3m. The lattice parameter is 10.6972(1) Å. In addition, the compound shows strong optical absorption in the visible region (λ > 420 nm) and the band gap of In2BiTaO7 was estimated to be about 2.47 eV. For the photocatalytic reaction, H2 or O2 evolution was observed from CH3OH/H2O or AgNO3 solution respectively with In2BiTaO7 as the photocatalyst under visible light irradiation, indicating that In2BiTaO7 is responsive to visible light for splitting water. Furthermore, the catalyst remained photoactive in the wavelength range up to 510 nm. Photocatalytic degradation of methylene blue (MB) dye over the compound was further investigated under visible light irradiation. The results showed that complete removal of aqueous MB could be achieved after irradiation for 135 min over In2BiTaO7. Furthermore, under visible light irradiation In2BiTaO7 showed markedly higher catalytic activity compared to P-25 for MB photocatalytic degradation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luan, J., Zou, Z., Lu, M. et al. Structural and photocatalytic properties of the new solid photocatalyst In2BiTaO7. Res Chem Intermediat 32, 31–42 (2006). https://doi.org/10.1163/156856706775012950

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1163/156856706775012950

Navigation