Skip to main content

Advertisement

Log in

Photocatalytic properties of CaTi2O5 via a facile additive-free aqueous strategy with different pH values

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

CaTi2O5 was selectively prepared by a solvothermal process without template and surfactant. The phase of the as-prepared samples was determined by X-ray diffraction (XRD). The microstructure was characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Results found that pH values had a crucial effect on the crystal phase and shape evolution of the samples. CaTi2O5 sample prepared at pH of 5.2 shows high efficient light harvesting, large surface area and crystallinity. Moreover, CaTi2O5 shuttle-like sample shows good photocatalytic activity against methyl orange due to its longer and thinner shuttle-like morphology and high crystallinity, enhanced light harvesting and large surface area. The photocatalytic rate of CaTi2O5 shuttle-like structure reaches 0.1988 min−1 for 25-min methyl orange degradation under the ultraviolet light irradiation and displays an excellent photostability with a degradation efficiency of 0.1952 min−1 after four cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Tang Y, Jiang Z, Xing G, Li A, Kanher PD. Hollow nanostructures: efficient Ag@AgCl cubic cage photocatalysts profit from ultrafast plasmon-induced electron transfer processes. Adv Funct Mater. 2013;23(23):2932.

    Article  CAS  Google Scholar 

  2. Jiang Z, Tang Y, Tay Q, Zhang Y, Malyi OI. Understanding the role of nanostructures for efficient hydrogen generation on immobilized photocatalysts. Adv Energy Mater. 2013;3(10):1368–80.

    Article  CAS  Google Scholar 

  3. Panahi PN, Rasoulifard MH, Babaei S. Photocatalytic activity of cation (Mn) and anion (N) substitution in LaCoO3 nanoperovskite under visible light. Rare Met. 2020;39(2):139.

    Article  Google Scholar 

  4. Tang Y, Deng J, Li W, Malyi OI, Zhang Y, Zhou X, Pan S, Wei J, Cai Y, Chen Z, Chen X. Water-soluble sericin protein enabling stable solid-electrolyte interphase for fast charging high voltage battery electrode. Adv Mater. 2017;29(33):1701828.

    Article  Google Scholar 

  5. Chen X, Zhang Y, Malyi QI, Tang Y, Wei J. Reducing charge carrier transport barrier in functionally layer-graded electrode. Angew Chem Int Ed. 2017;56(47):14847.

    Article  Google Scholar 

  6. Yu CL, Wei LF, Chen JC, Zhou WQ, Fan QZ, Yu J. Novel AgCl/Ag2CO3 heterostructured photocatalysts with enhanced photocatalytic performance. Rare Met. 2016;35(6):475.

    Article  CAS  Google Scholar 

  7. Yu H, Shi R, Zhao Y, Bian T, Zhao Y, Zhou C, Geoffrey IN, Waterhouse W, Tung CH, Zhang T. Photocatalysis: alkali-assisted synthesis of nitrogen deficient graphitic carbon nitride with tunable band structures for efficient visible-light-driven. Adv Mater. 2017;29(16):1605148.

    Article  Google Scholar 

  8. Chen GB, Gao R, Zhao YF, Li ZH, Geoffrey IN, Waterhouse SR, Zhao J, Zhang M, Shang L, Sheng G, Zhang X, Wen X, Wu LZ, Tung CH, Zhang T. Photothermal CO2 hydrogenation to hydrocarbons using CoFeAl-layered double hydroxides nanosheets-derived catalysts. Adv Mater. 2018;30(3):1704663.

    Article  Google Scholar 

  9. Zhao Y, Waterhouse GIN, Zheng L, Cao X. Photocatalysts: layered-double-hydroxide nanosheets as efficient visible-light-driven photocatalysts for dinitrogen fixation. Adv Mater. 2017;29(42):1703828.

    Article  Google Scholar 

  10. Zhao H, Ding XL, Zhang B, Li YX, Wang CY. Enhanced photocatalytic hydrogen evolution along with byproducts suppressing over Z-scheme CdxZn1−xS/Au/g-C3N4 photocatalysts under visible light. Sci Bull. 2017;62(9):602.

    Article  CAS  Google Scholar 

  11. Shi R, Cao Y, Bao Y, Zhao Y, Waterhouse GIN, Fang Z, Wu LZ, Tung CH, Yin Y, Zhang T. Self-assembled Au/CdSe nanocrystal clusters for plasmon-mediated photocatalytic hydrogen evolution. Adv Mater. 2017;29(27):1700803.

    Article  Google Scholar 

  12. Xing M, Xu W, Dong C, Bai Y, Zeng J, Zhou Y, Zhang J, Yin Y. Metal sulfides as excellent co-catalysts for H2O2 decomposition in advanced oxidation processes. CHEM. 2018;4(6):13591372.

    Article  Google Scholar 

  13. Xing M, Zhou Y, Dong C, Cai L, Zeng L, Shen B, Pan L, Dong C, Chai Y, Zhang J, Yin Y. Modulation of the reduction potential of TiO2−x by fluorination for efficient and selective CH4 generation from CO2 photoreduction. Nano Lett. 2018;18(6):3384.

    Article  CAS  Google Scholar 

  14. Li H, Li J, Zhu Y, Xie W, Shao R, Yao X, Gao A, Yin Y. Cd2+-doped amorphous TiO2 hollow spheres for robust and ultrasensitive photoelectrochemical sensing of hydrogen sulfide. Anal Chem. 2018;90(8):5496.

    Article  CAS  Google Scholar 

  15. Lin C, Han ZW, Yu L, Yu JY. Recent progress in Li-S and Li-Se batteries. Rare Met. 2017;36(5):339.

    Article  Google Scholar 

  16. Cao S. Two-dimensional gersiloxenes with tunable band gap as new photocatalysts. Rare Met. 2020;39(3):230.

    Article  Google Scholar 

  17. Qu X, Alvarez PJJ, Li Q. Applications of nanotechnology in water and wastewater treatment. Water Res. 2013;47(12):3931.

    Article  CAS  Google Scholar 

  18. Herrmann JM. Heterogeneous photocatalysis: state of the art and present applications In honor of Pr. RL Burwell Jr.(1912–2003), Former Head of Ipatieff Laboratories, Northwestern University, Evanston (Ill). Top Catal. 2005;34(1–4):49.

    Article  CAS  Google Scholar 

  19. Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature. 1972;238(5358):37.

    Article  CAS  Google Scholar 

  20. Hoffmann MR, Martin ST, Choi WY, Bahnemann DW. Environmental applications of semiconductor photocatalysis. Chem Rev. 1995;95(1):69.

    Article  CAS  Google Scholar 

  21. Wang JW, Wang CY, Zhu SP, Luo XP, Li ZH, Xu LL. Benzohydroxamic acid photodegradation by prepared Ce modified TiO2. Chin J Rare Met. 2018;42(4):393.

    Google Scholar 

  22. Wu J, Tang M. Hydrothermal growth of nanometer- to micrometer-size anatase single crystals with exposed (001) facets and their ability to assist photodegradation of rhodamine B in water. J Hazard Mater. 2011;190(1):566.

    Article  CAS  Google Scholar 

  23. Chen JY, Li GY, Zhang HM, Liu PR, Zhao HJ, An TC. Anatase TiO2 mesocrystals with exposed (001) surface for enhanced photocatalytic decomposition capability toward gaseous styrene. Catal Today. 2014;224:216.

    Article  CAS  Google Scholar 

  24. Xiang QJ, Jaroniec M. Tunable photocatalytic selectivity of TiO2 films consisted of flower-like microspheres with exposed 001 facets. Chem Commun. 2011;47(15):4532.

    Article  CAS  Google Scholar 

  25. Hosono H, Mishima Y, Takezoe H, MacKenzie KJD. Nanomaterials: from research to applications. Oxford: Elsevier; 2006. 133.

    Google Scholar 

  26. Dong WX, Song B, Zhao GL, Han GR. Effects of pH on morphosynthesis and properties of calcium titanium oxides via a facile aqueous strategy. Mater Res Bull. 2013;48(11):4633.

    Article  CAS  Google Scholar 

  27. Jacob KT, Abraham KPT. Thermodynamic properties of calcium titanates: CaTiO3, Ca4Ti3O10, and Ca3Ti2O7. J Chem Thermodyn. 2009;41(6):816.

    Article  CAS  Google Scholar 

  28. Dong WX, Bao QF, Gu XY. A preparation method of high photocatalytic activity CaTi2O5 nanoparticles and its products. China Patent; 201410277172.3. 2017.

  29. Mei CS, Wen PY, Liu ZC, Liu HX, Wang YD, Yang WM, Xie ZK, Hua WM, Gao Z. Selective production of propylene from methanol: mesoporosity development in high silica HZSM-5. J Catal. 2008;258(1):243.

    Article  CAS  Google Scholar 

  30. Yoldas BE. Hydrolysis of titanium alkoxide and effects of hydrolytic polycondensation parameters. J Mater Sci. 1986;21(3):1087.

    Article  CAS  Google Scholar 

  31. Cao LX, Spiess FJ, Huang A, LSuib S, Obee TN, Hayn SO, Freihaut JD. Heterogeneous photocatalytic oxidation of 1-butene on SnO2 and TiO2 films. J Phys Chem B. 1999;103(15):2912.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (No. 51502119) and Jiangxi Major Natural Science Foundation (Nos. 20152ACB21022 and 20161BBH80048).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei-Xia Dong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, WX., Bao, QF., Gu, XY. et al. Photocatalytic properties of CaTi2O5 via a facile additive-free aqueous strategy with different pH values. Rare Met. 40, 1746–1752 (2021). https://doi.org/10.1007/s12598-020-01461-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-020-01461-x

Keywords

Navigation