Skip to main content
Log in

It Takes Two to Tango: Genotyping and Phenotyping in Genome-Wide Association Studies

  • Published:
Biological Theory Aims and scope Submit manuscript

Abstract

In this article we examine the “phenotype” concept in light of recent technological advances in Genome-Wide Association Studies (GWAS). By observing the technology and its presuppositions, we put forward the thesis that at least in this case genotype and phenotype are effectively coidentifled one by means of the other. We suggest that the coidentiflcation of genotype-phenotype couples in expression-based GWAS also indicates a conceptual dependence, which we call “co-deñnition.” We note that viewing these terms as codeflned runs against possible expectations, viz., that genotypes and phenotypes could ultimately be expressed independently from one another. In addition, the co-definition of genotypes and phenotypes in this context emphasizes the correlative (rather than mechanistic) character of both genotypes and phenotypes in GWAS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bittner M, Meitzer P, Chen Y, Jiang Y, Seftor E, Hendrix M, Radmacher M, Simon R, Yakhini Z, Ben-Dor A, Sampas N, Dougherty E, Wang E, Marincoia F, Gooden C, Lueders J, Giatfeiter A, Poiiock P, Carpten J, Giiianders E, Leja D, Dietrich K, Beaudry C, Berens M, Aiberts D, Sondak V (2000) Molecular classification of cutaneous malignant melanoma by gene expression profiling. Nature 406: 536–540.

    Article  Google Scholar 

  • Brem RB, Yvert G, Clinton R, Kruglyak L (2002) Genetic dissection of transcriptional regulation in budding yeast. Science 296: 752–755.

    Article  Google Scholar 

  • Callebaut W (2005) Again, what the philosophy of biology is not. Acta Biotheoretica 53: 93–122.

    Article  Google Scholar 

  • Dixon AL, Liang L, Moffatt MF, Chen W, Heath S, Wong KC, Taylor J, Burnett E, Gut I, Farrall M, Lathrop GM, Abecasis GR, Cookson WO (2007) A genome-wide association study of global gene expression. Nature Genetics 39: 1202–1207.

    Article  Google Scholar 

  • Emilsson V, Thorleifsson G, Zhang B, Leonardson AS, Zink F, Zhu J, Carlson S, Helgason A, Walters GB, Gunnarsdottir S, Mouy M, Steinthorsdottir V, Eiriksdottir GH, Bjornsdottir G, Reynisdottir I, Gudbjartsson D, Helgadottir A, Jonasdottir A, Styrkarsdottir U, Gretarsdottir S, Magnusson KP, Stefansson H, Fossdal R, Kristjansson K, Gislason HG, Stefansson T, Leifsson BG, Thorsteinsdottir U, Lamb JR, Gulcher JR, Reitman ML, Kong A, Schadt EE, Stefansson K (2008) Genetics of gene expression and its effect on disease. Nature 452: 423–428.

    Article  Google Scholar 

  • Falk, R (2007) Wilhelm Johannsen: A rebel or a diehard? In: Rebels, Mavericks, and Heretics in Biology (Harman O, Dietrich MR, eds), 65–83. New Haven, CT: Yale University Press.

    Google Scholar 

  • Fogle T (2001) The dissolution of protein coding genes in molecular biology. In: The Concept of the Gene in Development and Evolution: Historical and Epistemological Perspectives (Beurton RF, Falk R, Rheinberger HJ, eds), 3–25. Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Goldstein, D (2009). Common genetic variation and human traits. New England Journal of Medicine 360: 1696–1698.

    Article  Google Scholar 

  • Golub TR, Slonim DK, Tamayo P, Huard C, Gaasenbeek M, Mesirov JP, Coller H, Loh ML, Downing JR, Caligiuri MA, Bloomfield CD, Lander ES (1999) Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring. Science 286: 531–537.

    Article  Google Scholar 

  • Goring HH, Curran JE, Johnson MP, Dyer TD, Charlesworth J, Cole SA, Jowett JB, Abraham LJ, Rainwater DL, Comuzzie AG, Mahaney MC, Almasy L, MacCluer JW, Kissebah AH, Collier GR, Moses EK, Blangero J (2007) Discovery of expression QTLs using large-scale transcriptional profiling in human lymphocytes. Nature Genetics 39: 1208–1216.

    Article  Google Scholar 

  • Griesemer JR (2003) Genetics from an evolutionary process perspective. In: Genes in Development: Re-reading the Molecular Paradigm (Neumann-Held EM, Rehmann-Sutter C, eds), 343–375. Durham, NC: Duke University Press.

    Google Scholar 

  • Griffiths PE, Stotz K (2007) Gene. In: The Cambridge Companion to the Philosophy of Biology (Ruse M, and Hull D, eds), 85–102. Cambridge, UK: Cambridge University Press.

    Chapter  Google Scholar 

  • Hedenfalk I, Ringner M, Ben-Dor A, Yakhini Z, Chen Y, Chebil G, Ach R, Loman N, Olsson H, Meltzer P, Borg A, Trent J (2003) Molecular classification of familial non-BRCA1/BRCA2 breast cancer. Proceedings of the National Academy of Sciences USA 100: 2532–2537.

    Article  Google Scholar 

  • Hirschhorn J (2009) Genomewide association studies: Illuminating biologic pathways. New England Journal of Medicine 360: 1699–1701.

    Article  Google Scholar 

  • Hubner N, Wallace CA, Zimdahl H, Petretto E, Schulz H, Maciver F, Mueller M, Hummel O, Monti J, Zidek V, Musilova A, Kren V, Causton H, Game L, Born G, Schmidt S, Müller A, Cook SA, Kurtz TW, Whittaker J, Pravenec M, Aitman TJ (2005) Integrated transcriptional profiling and linkage analysis for identification of genes underlying disease. Nature Genetics 37: 243–253.

    Article  Google Scholar 

  • Jacob F, Monod J (1961) Genetic regulatory mechanisms in the synthesis of proteins. Journal of Molecular Biology 3: 318–356.

    Article  Google Scholar 

  • Keller EF (2002) Making Sense of Life. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Lewontin RC (1992) Genotype and phenotype. In: Keywords in Evolutionary Biology (Keller EF, Lloyd E, eds), 137–144. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Lewontin RC (2004) The genotype/phenotype distinction. In: Stanford Encyclopedia of Philosophy. Avaliable at http://plato.stanford.edu/entries/genotype-phenotype

  • Lloyd EA, Dunn M, Cianciollo J, Mannouris C (2005) Pluralism without genic causes? Philosophy of Science 72: 334–341.

    Article  Google Scholar 

  • Morley M, Molony CM, Weber TM, Devlin JL, Ewens KG, Spielman RS, Cheung VG (2004) Genetic analysis of genome-wide variation in human gene expression. Nature 430: 743–747.

    Article  Google Scholar 

  • Nachtomy O, Shavit A, Yakhini Z (2007) Gene expression and the concept of the phenotype. Studies in History and Philosophy of Biology and Biomedical Sciences 38: 238–254.

    Article  Google Scholar 

  • Office of Population Genomics (2009) Catalog of Published Genome-Wide Association Studies. National Genome Research Institute, National Institute of Health. Available at http://www.genome.gov/gwastudies

  • Osada N, Kohn MH, Wu CI (2006) Genomic inferences of the cis-regulatory nucleotide polymorphisms underlying gene expression differences between Drosophila melanogaster mating races. Molecular Biology and Evolution 23: 1585–1591.

    Article  Google Scholar 

  • Rockman MV, Kruglyak L (2006) Genetics of global gene expression. Nature Review Genetics 7: 862–872.

    Article  Google Scholar 

  • Roeder K, Luca D (2009) Searching for disease susceptibility variants in structured populations. Genomics 93: 1–4.

    Article  Google Scholar 

  • Sandberg R, Yasuda R, Pankratz DG, Carter TA, Del Rio JA, Wodicka L, Mayford M, Lockhart DJ, Barlow C (2000) Regional and strain-specific gene expression mapping in the adult mouse brain. Proceedings of the National Academy of Sciences USA 97: 11038–11043.

    Article  Google Scholar 

  • Schadt EE, Monks SA, Drake TA, Lusis AJ, Che N, Colinayo V, Ruff TG, Milligan SB, Lamb JR, Cavet G, Linsley PS, Mao M, Stoughton RB, Friend SH (2003) Genetics of gene expression surveyed in maize, mouse and man. Nature 422: 297–302.

    Article  Google Scholar 

  • Spielman RS, Bastone LA, Burdick JT, Morley M, Ewens WJ, Cheung VG (2007) Common genetic variants account for differences in gene expression among ethnic groups. Nature Genetics 39: 226–231.

    Article  Google Scholar 

  • Sterelny K, Griffiths PE (1999) Sex and Death: An Introduction to Philosophy of Biology. Chicago, IL: University of Chicago Press.

    Google Scholar 

  • Sterelny K, Kitcher P (1988) The return of the gene. Journal of Philosophy 85: 339–360.

    Article  Google Scholar 

  • Stranger BE, Forrest MS, Dunning M, Ingle CE, Beazley C, Thorne N, Redon R, Bird CP, de Grassi A, Lee C, Tyler-Smith C, Carter N, Scherer SW, Tavaré S, Deloukas P, Hurles ME, Dermitzakis ET (2007) Relative impact of nucleotide and copy number variation on gene expression phenotypes. Science 315: 848–853.

    Article  Google Scholar 

  • U.S. Food and Drug Administration (2007) Letter 510(k) Summary: K070675. Available at http://www.fda.gov/cdrh/pdf7/K070675.pdf

  • van’t Veer LJ, Dai H, van de Vijver MJ, He YD, Hart AA, Mao M, Peterse HL, van der Kooy K, Marton MJ, Witteveen AT, Schreiber GJ, Kerkhoven RM, Roberts C, Linsley PS, Bernards R, Friend SH (2002) Gene expression profiling predicts clinical outcome of breast cancer. Nature 415: 530–536.

    Article  Google Scholar 

  • Waters KC (2000) Molecules made biological. Revue Internationale de Philosophie 214: 9–34.

    Google Scholar 

  • Weber M (2005) Philosophy of Experimental Biology. Cambridge, UK: Cambridge University Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ohad Nachtomy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nachtomy, O., Ramati, Y., Shavit, A. et al. It Takes Two to Tango: Genotyping and Phenotyping in Genome-Wide Association Studies. Biol Theory 4, 294–301 (2009). https://doi.org/10.1162/biot.2009.4.3.294

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1162/biot.2009.4.3.294

Keywords

Navigation