Skip to main content
Log in

Systems Biology: At Last an Integrative Wet and Dry Biology!

  • Trend
  • Published:
Biological Theory Aims and scope Submit manuscript

Abstract

The progress of the molecular biosciences has been so enormous that a discipline studying how cellular functioning emerges out of the behaviors of their molecular constituents has become reality. Systems biology studies cells as spatiotemporal networks of interacting molecules using an integrative approach of theory (mathematics, physics, engineering), experimental biology (genetics, molecular biology, physiology), and quantitative network-wide analytical measurement (analytical biochemistry, imaging). Its aim is to understand how molecules jointly bring about life. Systems biology is rapidly discovering principles governing the functioning of molecular networks and methods to model and measure them. The application of the conceptual strength of systems sciences such as physics and engineering are opening up new ways of experimentally studying the design and functioning of molecular networks. Typically, in such studies models are used to highlight principles, design experiments, or to act in a predictive mode to specifically modify cellular behavior. In this trend article, theoretical approaches being applied in systems biology will be discussed. A number of books have recently appeared that deal with theoretical aspects of systems biology. In this article they are highlighted to facilitate the communication of systems biology to a broader audience.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Acar M, Becskei A, van Oudenaarden A (2005) Enhancement of cellular memory by reducing stochastic transitions. Nature 435: 228–232.

    Article  Google Scholar 

  • Albert R, Barabasi AL (2002) Statistical mechanics of complex networks. Reviews of Modern Physics 74: 47–97.

    Article  Google Scholar 

  • Almaas E, Kovács B, Vicsek T, Oltvai ZN, Barabasi A-L (2004) Global organization of metabolic fluxes in the bacterium Escherichia coli. Nature 427: 839–843.

    Article  Google Scholar 

  • Alon U (2006) Introduction to Systems Biology. London: Chapman and Hall.

    Google Scholar 

  • Bakker BM, Michels PA, Opperdoes FR, Westerhoff WV (1997) Glycolysis in bloodstream form Trypanosoma brucei can be understood in terms of the kinetics of the glycolytic enzymes. Journal of Biological Chemistry 272: 3207–3215.

    Article  Google Scholar 

  • Barabasi AL, Oltvai ZN (2004) Network biology: Understanding the cell’s functional organization. Nature Reviews Genetics 5: 101–113.

    Article  Google Scholar 

  • Benner SA, Sismour AM (2005) Synthetic biology. Nature Reviews Genetics 6: 533–543.

    Article  Google Scholar 

  • Boogerd FC, Bruggeman FJ, Hofmeyr J-H, Westerhoff HV, eds. (2007) Systems Biology: Philosophical Foundations. Amsterdam: Elsevier Science.

    Google Scholar 

  • Bruggeman FJ, Boogerd FC, Westerhoff HV (2005) The multifarious short-term regulation of ammonium assimilation of Escherichia coli: Dissection using an in silico replica. FEBS Journal 272: 1965–1985.

    Article  Google Scholar 

  • Bruggeman FJ, de Haan J, Hardin H, Bouwman J, Rossell S, van Eunen K, Bakker BM, Westerhoff HV (2006) Time-dependent hierarchical regulation analysis: Deciphering cellular adaptation. Systems Biology (Stevenage) 153: 318–322.

    Article  Google Scholar 

  • Bruggeman FJ, Westerhoff HV (2007) The nature of systems biology. Trends in Microbiology 15: 45–50.

    Article  Google Scholar 

  • Bruggeman FJ, Westerhoff HV, Boogerd FC (2002) BioComplexity: A pluralist research strategy is necessary for a mechanistic explanation of the “live” state. Philosophical Psychology 15: 411–140.

    Article  Google Scholar 

  • Csete M, Doyle J (2004) Bow ties, metabolism and disease. Trends in Biotechnology 22: 446–50.

    Article  Google Scholar 

  • Danø S, Sørensen PG, Hynne F (1999) Sustained oscillations in living cells. Nature 402: 320–322.

    Article  Google Scholar 

  • El-Samad H, Kurata H, Doyle JC, Gross CA, Khammash M (2005) Surviving heat shock: Control strategies for robustness and performance. Proceedings of the National Academy of Sciences USA 102: 2736–2741.

    Article  Google Scholar 

  • Fell DA (1997) Understanding the Control of Metabolism. Miami: Portland Press.

    Google Scholar 

  • Galperin MY (2005) A census of membrane-bound and intracellular signal transduction proteins in bacteria: Bacterial IQ, extroverts and introverts. BMC Microbiology 5: 35.

    Article  Google Scholar 

  • Goodacre R, Vaidyanathan S, Dunn WB, Harrigan GG, Kell DB (2004) Metabolomics by numbers: Acquiring and understanding global metabolite data. Trends in Biotechnology 22: 245–252.

    Article  Google Scholar 

  • Heinrich R, Rapoport TA (1974) A linear steady-state treatment of enzymatic chains: General properties, control and effector strength. European Journal of Biochemistry 42: 89–95.

    Article  Google Scholar 

  • Hoefnagel MH, Starrenburg MJ, Martens DE, Hugenholtz J, Kleerebezem M, Van Swam II, Bongers R, Westerhoff HV, Snoep JL (2002) Metabolic engineering of lactic acid bacteria, the combined approach: Kinetic modelling, metabolic control and experimental analysis. Microbiology 148(Pt 4): 1003–1013.

    Google Scholar 

  • Hoops S, Sahle S, Lee C, Pahle J, Simus N, Singhal M, Xu L, Mendes P, Kummer U (2006) COPASI—a COmplex PAthway SImulator. Bioinformatics 22: 3067–3074.

    Article  Google Scholar 

  • Hornberg JJ, Bruggeman FJ, Binder B, Geest CR, Bij de Vaatel AJM, Lankelma J, Heinrich JR, Westerhoff HV (2005) Principles behind the multifarious control of signal transduction: ERK phosphorylation and kinase/phosphatase control. FEBS Journal 272: 244–258.

    Article  Google Scholar 

  • Hucka M, Finney A, Sauro HM, Bolouri H, Doyle J, Kitano H (2002) The ERATO Systems Biology Workbench: Enabling interaction and exchange between software tools for computational biology. Pacific Symposium on Biocomputation: 450–461.

  • Hynne R, Danø S, Stensen PG (2001) Full-scale model of glycolysis in Saccharomyces cerevisiae. Biophysical Chemistry 94: 121–163.

    Article  Google Scholar 

  • Kacser H, Burns JA (1973) The control of flux. Symposia of the Society for Experimental Biology 27: 65–104.

    Google Scholar 

  • Kalir S, Mangan S, Alon U (2005) A coherent feed-forward loop with a SUM input function prolongs flagella expression in Escherichia coli. Molecular Systems Biology 1: 2005: 0006.

    Google Scholar 

  • Kaneko K (2006) Life: An Introduction to Complex Systems Biology. Berlin: Springer.

    Google Scholar 

  • Kaufmann BB, van Oudenaarden A (2007) Stochastic gene expression: From single molecules to the proteome. Current Opinion in Genetics and Development 17: 107–112.

    Article  Google Scholar 

  • Kholodenko BN, Demin OV, Moehren G, Hoek JB (1999) Quantification of short term signaling by the epidermal growth factor receptor. Journal of Biological Chemistry 274: 30169–30181.

    Article  Google Scholar 

  • Klipp E, Herwig R, Kowald A, Wierling C, Lehrach H (2005) Systems Biology in Practice: Concepts, Implementation, and Application. Weinheim: Wiley-VCH.

    Book  Google Scholar 

  • Klipp E, Nordlander B, Kruger R, Gennemark P, Hohmann S (2005) Integrative model of the response of yeast to osmotic shock. Nature Biotechnology 23: 975–982.

    Article  Google Scholar 

  • Mahadevan R, Schilling CH (2003) The effects of alternate optimal solutions in constraint-based genome-scale metabolic models. Metabolic Engineering 5: 264–276.

    Article  Google Scholar 

  • Mangan S, Alon U (2003) Structure and function of the feed-forward loop network motif. Proceedings of the National Academy of Sciences USA 100: 11980–11985.

    Article  Google Scholar 

  • Mangan S, Itzkovitz S, Zaslaver A, Alon U (2006) The incoherent feedforward loop accelerates the response-time of the gal system of Escherichia coli. Journal of Molecular Biology 356: 1073–1081.

    Article  Google Scholar 

  • Mangan S, Zaslaver A, Alon U (2003) The coherent feedforward loop serves as a sign-sensitive delay element in transcription networks. Journal of Molecular Biology 334: 197–204.

    Article  Google Scholar 

  • Milo R, Shen-Orr S, Itzkovitz S, Kashtan N, Chklovskii D, Alon U (2002) Network motifs: Simple building blocks of complex networks. Science 298: 824–827.

    Article  Google Scholar 

  • Moles CG, Mendes P, Banga JR (2003) Parameter estimation in biochemical pathways: A comparison of global optimization methods. Genome Research 13: 2467–2474.

    Article  Google Scholar 

  • Mushegian AR, Koonin EV (1996) A minimal gene set for cellular life derived by comparison of complete bacterial genomes. Proceedings of the National Academy of Sciences USA 93: 10268–10273.

    Article  Google Scholar 

  • Nelson DE, Ihekwaba AE, Elliott M, Johnson JR, Gibney CA, Foreman BE, Nelson G, See V, Horton CA, Spiller DG, Edwards SW, McDowell HP, Unitt JF, Sullivan E, Grimley R, Benson N, Broomhead D, Kell DB, White MRH (2004) Oscillations in NF-kappaB signaling control the dynamics of gene expression. Science 306: 704–708.

    Article  Google Scholar 

  • Newman MEJ (2003) The structure and function of complex networks. SIAM Review 45: 167–256.

    Article  Google Scholar 

  • Olivier BG, Snoep JL (2004) Web-based kinetic modelling using JWS Online. Bioinformatics 20: 2143–2144.

    Article  Google Scholar 

  • Ozbudak EM, Thattai M, Lim HN, Shraiman BI, van Oudenaarden A (2004) Multistability in the lactose utilization network of Escherichia coli. Nature 427: 737–740.

    Article  Google Scholar 

  • Palsson BO (2006) Systems Biology: Properties of Reconstructed Networks. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Papin JA, Stelling J, Price ND, Klamt S, Schuster S, Palsson BO (2004) Comparison of network-based pathway analysis methods. Trends in Biotechnology 22: 400–405.

    Article  Google Scholar 

  • Paulsson J (2004) Summing up the noise in gene networks. Nature 427: 415–418.

    Article  Google Scholar 

  • Price ND, Reed JL, Palsson BO (2004) Genome-scale models of microbial cells: Evaluating the consequences of constraints. Nature Reviews Microbiology 2: 886–897.

    Article  Google Scholar 

  • Ravasz E, Somera AL, Mongru DA, Oltvai ZN, Barabasi A-L (2002) Hierarchical organization of modularity in metabolic networks. Science 297: 1551–1555.

    Article  Google Scholar 

  • Reed JL, Palsson BO (2004) Genome-scale in silico models of E. coli have multiple equivalent phenotypic states: Assessment of correlated reaction subsets that comprise network states. Genome Research 14: 1797–1805.

    Article  Google Scholar 

  • Reijenga KA, Bakker BM, van der Weijden CC, Westerhoff HV (2005) Training of yeast cell dynamics. FEBS Journal 272: 1616–1624.

    Article  Google Scholar 

  • Rossell S, Van der Weijden CC, Lindenbergh A, van Tuijl A, Francke C, Bakker BM, Westerhoff HV (2006) Unraveling the complexity of flux regulation: A new method demonstrated for nutrient starvation in Saccharomyces cerevisiae. Proceedings of the National Academy of Sciences USA 103: 2166–2171.

    Article  Google Scholar 

  • Schoeberl B, Eichler-Jonsson C, Gilles ED, Müller G (2002) Computational modeling of the dynamics of the MAP kinase cascade activated by surface and internalized EGF receptors. Nature Biotechnology 20: 370–375.

    Article  Google Scholar 

  • Segel IH (1993) Enzyme Kinetics: Behavior and Analysis of Rapid Equilibrium and Steady-state Enzyme Systems. New York: Wiley.

    Google Scholar 

  • Snoep JL, Bruggeman F, Olivier BG, Westerhoff HV (2006) Towards building the silicon cell: A modular approach. Biosystems 83: 207–216.

    Article  Google Scholar 

  • Sprinzak D, Elowitz MB (2005) Reconstruction of genetic circuits. Nature 438: 443–448.

    Article  Google Scholar 

  • Stelling J, Klamt S, Bettenbrock K. Schuster S, Gilles ED (2002) Metabolic network structure determines key aspects of functionality and regulation. Nature 420: 190–193.

    Article  Google Scholar 

  • Swameye I, Muller TG, Timmer J, Sandra O, Klingmuller U (2003) Identification of nucleocytoplasmic cycling as a remote sensor in cellular signaling by databased modeling. Proceedings of the National Academy of Sciences USA 100: 1028–1033.

    Article  Google Scholar 

  • Szallazi Z, Stelling J, Periwal V (2006) System Modeling in Cellular Biology: From Concepts to Nuts and Bolts. Cambridge, MA: MIT Press.

    Book  Google Scholar 

  • Szathmáry E (2004) From biological analysis to synthetic biology. Current Biology 14: R145–R146.

    Article  Google Scholar 

  • Ter Kuile BH, Westerhoff HV (2001) Transcriptomemeets metabolome: Hierarchical and metabolic regulation of the glycolytic pathway. FEBS Letters 500: 169–171.

    Article  Google Scholar 

  • Teusink B, Passarge J, Reijenga CA, Esgalhado E, van der Weijden CC, Schepper M, Walsh MC, Bakker BM, van Dam K, Westerhoff HV, Snoep JL (2000) Can yeast glycolysis be understood in terms of in vitro kinetics of the constituent enzymes? Testing biochemistry. European Journal of Biochemistry 267: 5313–5329.

    Article  Google Scholar 

  • Tyson JJ, Chen K, Novak B (2001) Network dynamics and cell physiology. Nature Reviews Molecular Cell Biology 2: 908–916.

    Article  Google Scholar 

  • Westerhoff HV, Chen YD (1984) How do enzyme activities control metabolite concentrations? An additional theorem in the theory of metabolic control. European Journal of Biochemistry 142: 425–430.

    Article  Google Scholar 

  • Westerhoff HV, Palsson BO (2004) The evolution of molecular biology into systems biology. Nature Biotechnology 22: 1249–1252.

    Article  Google Scholar 

  • Wiechert W (2002) An introduction to 13C metabolic flux analysis. Genetic Engineering 24: 215–238.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank J. Bruggeman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bruggeman, F.J. Systems Biology: At Last an Integrative Wet and Dry Biology!. Biol Theory 2, 183–188 (2007). https://doi.org/10.1162/biot.2007.2.2.183

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1162/biot.2007.2.2.183

Keywords

Navigation