Skip to main content
Log in

Google Embryo for Building Quantitative Understanding of an Embryo As It Builds Itself. II. Progress Toward an Embryo Surface Microscope

  • Published:
Biological Theory Aims and scope Submit manuscript

Abstract

Embryos start out as tiny globes, on which many important events occur, including cell divisions, shape changes and changes of neighbors, waves of contraction and expansion, motion of cell sheets, extension of filopodia, shearing of cell connections, and differentiation and morphogenesis of tissues such as skin and brain. I propose to build a robotic microscope that would enable a new way to look at embryos: Google Embryo. This is akin to sending a space probe to Jupiter and its moons, sending back spectacular new visions of their complexity, activity, and beauty.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aguet F, Van De Ville D, Unser M (2008) Model-based 2.5-d deconvolution for extended depth of field in brightfield microscopy. IEEE Transactions on Image Processing 17: 1144–1153.

    Google Scholar 

  • Albrecht-Buehler G (1977) Daughter 3T3 cells: Are they mirror images of each other? Journal of Cell Biology 72: 595–603.

    Google Scholar 

  • Asada-Kubota M, Kubota HY (1991) Furrow-related contractions are inhibited but furrow-unrelated contractions are not affected in af mutant eggs of Xenopus laevis. Developmental Biology 147: 354–362.

    Google Scholar 

  • Austin RH, Chan SS (2003) Of spherical cows, cloudy crystal balls, and proteins. Biochemical and Biophysical Research Communications 312: 215–221.

    Google Scholar 

  • Ayres FJ, Rangayyan RM (2007) Design and performance analysis of oriented feature detectors. Journal of Electronic Imaging 16(2): article number 023007, 12 pages.

  • Banchoff TF (1990) Beyond the Third Dimension: Geometry, Computer Graphics, and Higher Dimensions. New York: Scientific American Library.

    Google Scholar 

  • Beloussov LV, Gordon R (2006) Preface. Morphodynamics: Bridging the gap between the genome and embryo physics. International Journal of Developmental Biology 50: 79–80.

    Google Scholar 

  • Berns MW (1974) Biological Microirradiation: Classical and Laser Sources. Englewood Cliffs, NJ: Prentice-Hall.

    Google Scholar 

  • Berns MW, Wright WH, Wiegand Steubing R (1991) Laser microbeam as a tool in cell biology. International Review of Cytology 129: 1–44.

    Google Scholar 

  • Björklund NK (1993) Small is beautiful: Economical axolotl colony maintenance with natural spawnings as if axolotls mattered. In: Handbook on Practical Methods (Malacinski GM, Duhon ST, eds), Bloomington, IN: Department of Biology, Indiana University, 38–47.

    Google Scholar 

  • Björklund NK, Gordon R (1994) Surface contraction and expansion waves correlated with differentiation in axolotl embryos. I. Prolegomenon and differentiation during the plunge through the blastopore, as shown by the fate map. Computers and Chemistry 18: 333–345.

    Google Scholar 

  • Björklund NK, Gordon R (2006) A hypothesis linking low folate intake to neural tube defects due to failure of post-translation methylations of the cytoskeleton. International Journal of Developmental Biology 50: 135–141.

    Google Scholar 

  • Blackstock A (2008) Intelligent Image Segmentation Using Uniform-Cost Search. Moffett Field, CA: NASA Ames Research Center. Available at http://www.alexblackstock.com/professional/writing.html

    Google Scholar 

  • Boot MJ, Westerberg CH, Sanz-Ezquerro J, Cotterell J, Schweitzer R, Torres M, Sharpe J (2008) In vitro whole-organ imaging: 4D quantification of growing mouse limb buds. Nature Methods 5: 609–612.

    Google Scholar 

  • Bordzilovskaya NP, Dettlaff TA (1979) Table of stages of the normal development of axolotl embryos and the prognostication of timing of successive developmental stages at various temperatures. Axolotl Colony Newsletter 7: 2–22.

    Google Scholar 

  • Bordzilovskaya NP, Dettlaff TA, Duhon ST, Malacinski GM (1989) Developmental-stage series of axolotl embryos. In: Developmental Biology of the Axolotl (Armstrong JB, Malacinski GM, eds), 201–219. New York: Oxford University Press.

    Google Scholar 

  • Boterenbrood EC, Narraway JM (1986) The direction of cleavage waves and the regional variation in the duration of cleavage cycles on the dorsal side of the Xenopus laevis blastula. Roux’s Archives of Developmental Biology 195: 484–488.

    Google Scholar 

  • Boterenbrood EC, Narraway JM (1990) Epiboly connected with cleavage in morula and early blastula stages of Xenopus laevis, a study using time-lapse photography. Roux’s Archives of Developmental Biology 198: 303–307.

    Google Scholar 

  • Boterenbrood EC, Narraway JM, Hara K (1983) Duration of cleavage cycles and asymmetry in the direction of cleavage waves prior to gastrulation in Xenopus laevis. Roux’s Archives of Developmental Biology 192: 216–221.

    Google Scholar 

  • Boughner JC, Buchtova M, Fu K, Diewert V, Hallgrimsson B, Richman JM (2007) Embryonic development of Python sebae. I: Staging criteria and macroscopic skeletal morphogenesis of the head and limbs. Zoology (Jena) 110: 212–230.

    Google Scholar 

  • Bowman CE (2009) Megavariate genetics: What you find is what you go looking for. Biological Theory 4: 21–28.

    Google Scholar 

  • Brodland GW, Gordon R, Scott MJ, Björklund NK, Luchka KB, Martin CC, Matuga C, Globus M, Vethamany-Globus S, Shu D (1994) Furrowing surface contraction wave coincident with primary neural induction in amphibian embryos. Journal of Morphology 219: 131–142.

    Google Scholar 

  • Brodland GW, Scott MJ, MacLean AF, Globus M, Vethamany-Globus S, Gordon R, Veldhuis JH, Del Maestro R (1996) Morphogenetic movements during axolotl neural tube formation tracked by digital imaging. Roux’s Archives of Developmental Biology 205: 311–318.

    Google Scholar 

  • Brodland GW, Veldhuis JH (1998) Three-dimensional reconstruction of live embryos using robotic macroscope images. IEEE Transactions on Biomedical Engineering 45: 1173–1181.

    Google Scholar 

  • Burnside MB, Jacobson AG (1968) Analysis of morphogenetic movements in the neural plate of the newt Taricha torosa. Developmental Biology 18: 537–552.

    Google Scholar 

  • Burr HS (1932) An electro-dynamic theory of development suggested by studies of proliferation rates in the brain of Amblystoma. Journal of Compatative Neurology 56: 347–371.

    Google Scholar 

  • Burr HS (1941) Field properties of the developing frog’s egg. Proceedings of the National Academy of Sciences USA 27: 276–281.

    Google Scholar 

  • Burr HS, Bullock TH (1941) Steady state potential differences in the early development of Amblystoma. Yale Journal of Biology and Medicine 14: 51–57.

    Google Scholar 

  • Burr HS, Hovland CI (1937) Bioelectric correlates of development in Amblystoma. Yale Journal of Biology and Medicine 9: 541–549.

    Google Scholar 

  • Burr HS, Northrop FSC (1935) The electro-dynamic theory of life. Quarterly Review of Biology 10: 322–333.

    Google Scholar 

  • Burr HS, Northrop FSC (1939) Evidence for the existence of an electro-dynamic field in living organisms. Proceedings of the National Academy of Sciences USA 25: 284–288.

    Google Scholar 

  • Burr HS, Sinnott EW (1944) Electrical correlates of form in cucurbitfruits. American Journal of Botany 31: 249–253.

    Google Scholar 

  • Caron N, Sheng Y (2008) Polynomial phase masks for extending the depth of field of a microscope. Applied Optica 47(22): E39–43.

    Google Scholar 

  • Chan M (1997) Egon Schiele: The Leopold Collection Vienna. MoMA (Museum of Modern Art)(26), 2–7. Available at http://www.moma.org/interactives/exhibitions/1997/schiele/artistwork.html

  • Chen X, Brodland GW (2008) Multi-scale finite element modeling allows the mechanics of amphibian neurulation to be elucidated. Physical Biology 5, doi:10.1088/1478-3975/1085/1081/015003

  • Chrusch DD, Podaima BW, Gordon R (2001) Cytobots: Intracellular robotic micromanipulators. Canadian Conference on Electrical and Computer Engineering, 2002. IEEE CCECE 2002, Piscataway: IEEE, 1640–1645.

    Google Scholar 

  • Courjon D (2003) Near-Field Microscopy and Near-Field Optics. Singapore: World Scientific.

    Google Scholar 

  • Crawford-Young S (2007) A Robotic Microscope for 3D Time-Lapse Imaging of Early Stage Axolotl Salamander Embryos. M.Sc. Thesis, Department of Electrical and Computer Engineering, University of Manitoba, Winnipeg. Available at http://mspace.lib.umanitoba.ca/bitstream/1993/331/1/MSc%20Thesis%20Susan%20Crawford-Young%202007.pdf

    Google Scholar 

  • Dahmann C, Basler K (1999) Compartment boundaries at the edge of development. Trends in Genetics 15: 320–326.

    Google Scholar 

  • Dhawan AP, Rangayyan RM, Gordon R (1984) Wiener filtering for deconvolution of geometric artifacts in limited-view image reconstruction. Proceedings of SPIE 515: 168–172.

    Google Scholar 

  • Dhawan AP, Rangayyan RM, Gordon R (1985) Image restoration by Wiener deconvolution in limited-view computed tomography. Applied Optics 24: 4013–4020.

    Google Scholar 

  • Dowski E Jr, Johnson G (2002) Marrying optics and electronics. Aspheric optical components and electronics improve depth of field for imaging systems. SPIE’s OE Magazine (Jan), 42–43.

  • Doyle J (2001) Computational biology: Beyond the spherical cow. Nature 411: 151–152.

    Google Scholar 

  • Eliceiri KW, Thomas C, White JG (2000) 4D Software Suite: Software tools for the capture and analysis of 4-dimensional data sets. Early 2000 Midwest Worm Meeting, abstract 57.

  • Elul T, Koehl MA, Keller R (1997) Cellular mechanism underlying neural convergent extension in Xenopus laevis embryos. Developmental Biology 191: 243–258.

    Google Scholar 

  • Evsikov SV, Morozova LM, Solomko AP (1994) Role of ooplasmic segregation in mammalian development. Roux’s Archives of Developmental Biology 203: 199–204.

    Google Scholar 

  • Ewald AJ, Peyrot SM, Tyszka JM, Fraser SE, Wallingford JB (2004) Regional requirements for Dishevelled signaling during Xenopus gastrulation: Separable effects on blastopore closure, mesendoderm internalization and archenteron formation. Development 131: 6195–6209.

    Google Scholar 

  • Fankhauser G (1941) Cell size, organ and body size in triploid newts (Triturus viridescens). Journal of Morphology 68: 161–177.

    Google Scholar 

  • Fankhauser G (1945) The effect of changes in chromosome number on amphibian development. Quarterly Review of Biology 20: 20–78.

    Google Scholar 

  • Fankhauser G, Schott BW (1952) Inverse relation of number of melanophores to chromosome number in embryos of the newt, Triturus viridescens. Journal of Experimental Zoology 121: 105–119.

    Google Scholar 

  • Fankhauser G, Vernon JA, Frank WH, Slack WV (1955) Effect of size and number of brain cells on learning in larvae of the salamander, Triturus viridescens. Science 122: 692–693.

    Google Scholar 

  • Feng YL, Gordon JW (1997) Removal of cytoplasm from one-celled mouse embryos induces early blastocyst formation. Journal of Experimental Zoology 277: 345–352.

    Google Scholar 

  • Fire A (1994) A four-dimensional digital image archiving system for cell lineage tracing and retrospective embryology. Computer Applications in the Biosciences 10: 443–447.

    Google Scholar 

  • Fleming TP, Papenbrock T, Fesenko I, Hausen P, Sheth B (2000) Assembly of tight junctions during early vertebrate development. Seminars in Cell and Developmental Biology 11: 291–299.

    Google Scholar 

  • Foe VE (1989) Mitotic domains reveal early commitment of cells in Drosophila embryos. Development 107: 1–22.

    Google Scholar 

  • Foe VE, Alberts BM (1983) Studies of nuclear and cytoplasmic behaviour during the five mitotic cycles that precede gastrulation in Drosophila embryogenesis. Journal of Cell Science 61: 31–70.

    Google Scholar 

  • Foe VE, Odell GM (1989) Mitotic domains partition fly embryos, reflecting early cell biological consequences of determination in progress. American Zoologist 29: 617–652.

    Google Scholar 

  • Forgacs G, Newman SA (2005) Biological Physics of the Developing Embryo. Cambridge: Cambridge University Press.

    Google Scholar 

  • Forster B, Van De Ville D, Berent J, Sage M, Unser M (2004) Complex wavelets for extended depth-of-field: A new method for the fusion of multichannel microscopy images. Microscopy Research and Technique 65: 33–42.

    Google Scholar 

  • Friedrich M, Rambold I, Melzer RR (1996) The early stages of ommatidial development in the flour beetle Tribolium castaneum (Coleoptera; Tenebrionidae). Development Genes and Evolution 206: 136–146.

    Google Scholar 

  • Gamow G (1970) My World Line: An Informal Autobiography. New York: Viking Adult.

    Google Scholar 

  • Gibson M (2010) Nano GigaPan: Changing the Way You See. Available at http://nanogigapan.blogspot.com/

  • Gilland E, Baker R, Denk W (2003) Long duration three-dimensional imaging of calcium waves in zebrafish using multiphoton fluorescence microscopy. Biological Bulletin 205: 176–177.

    Google Scholar 

  • Gilland E, Miller AL, Karplus E, Baker R, Webb SE (1999) Imaging of multicellular large-scale rhythmic calcium waves during zebrafish gastrulation. Proceedings of the National Academy of Sciences of the USA 96: 157–161.

    Google Scholar 

  • Gillette R (1944) Cell number and cell size in the ectoderm during neurulation (Ambystoma maculatum). Journal of Experimental Zoology 96: 201–222.

    Google Scholar 

  • Gordon R (1974) A tutorial on ART (Algebraic Reconstruction Techniques). IEEE Transactions on Nuclear Science NS 21: 78–93, 95.

    Google Scholar 

  • Gordon R (1982) Rotating microscope for “LANDSAT” photography of vertebrate embryos. Proceedings of SPIE 361: 48–52.

    Google Scholar 

  • Gordon R (1983) Computational embryology of the vertebrate nervous system. In: Computing in Biological Science (Geisow M, Barrett A, eds), 23–70. Amsterdam: Elsevier/North-Holland.

    Google Scholar 

  • Gordon R (1999) The Hierarchical Genome and Differentiation Waves: Novel Unification of Development, Genetics and Evolution. Singapore: World Scientific; London: Imperial College Press.

    Google Scholar 

  • Gordon R (2006) Mechanics in embryogenesis and embryonics: Prime mover or epiphenomenon? International Journal for Developmental Biology 50: 245–253.

    Google Scholar 

  • Gordon R, Björklund NK (1996) How to observe surface contraction waves on axolotl embryos. International Journal of Developmental Biology 40: 913–914.

    Google Scholar 

  • Gordon R, Bjorklund NK, Nieuwkoop PD (1994) Dialogue on embryonic induction and differentiation waves. International Review of Cytology 150: 373–420.

    Google Scholar 

  • Gordon R, Brodland GW(1987) The cytoskeletal mechanics of brain morphogenesis. Cell state splitters cause primary neural induction. Cell Biophysics 11: 177–238.

    Google Scholar 

  • Gordon R, Brodland GW (1989) Neurulation. In: Developmental Biology of the Axolotl (Armstrong JB, Malacinski GM, eds), 62–71. New York: Oxford University Press.

    Google Scholar 

  • Gordon R, Jacobson AG (1978) The shaping of tissues in embryos. Scientific American 238(6): 106–113.

    Google Scholar 

  • Gordon R, Buckley WR (2010) Embryo Physics Course: An Effort in Reverse Engineering. http://embryophysics.org/

  • Gordon R, Westfall JE (2009) Google Embryo for building quantitative understanding of an embryo as it builds itself: I. Lessons from Ganymede and Google Earth. Biological Theory 4: 390–395.

    Google Scholar 

  • Griffiths H, Tucker MG, Sage J, Herrenden-Harker WG (1996) An electrical impedance tomography microscope. Physiological Measurement 17 (Suppl 4A): A15–24.

    Google Scholar 

  • Gruwel MLH, Lerner BE, Björklund NK, Gordon R (2008) Time-lapse microMRI (µMRI) of axolotl embryogenesis. In: ESMRMB Congress 2008, Valencia, Spain: October 2–4, 2008. Available at http://www.esmrmb.org/

  • Hammond AT, Glick BS (2000) Raising the speed limits for 4D fluorescence microscopy. Traffic 1: 935–940.

    Google Scholar 

  • Hara K (1970) “Double camera” time-lapse micro-cinematography: Simultaneous filming of both poles of the amphibian egg. Mikroskopie 26: 181–184.

    Google Scholar 

  • Hara K (1971) Cinematographic observation of “surface contraction waves” (SCW) during the early cleavage of axolotl eggs. Wilhelm Roux’ Archiv für Entwicklungsmechanik 167: 183–186.

    Google Scholar 

  • Hardin JD, Keller RE (1988) The Behaviour and function of bottle cells during gastrulation of Xenopus laevis. Development 103: 211–230.

    Google Scholar 

  • Harte J (1988) Consider a Spherical Cow, A Course in Environmental Problem Solving. Mill Valley, CA: University Science Books.

    Google Scholar 

  • Hasama BI (1935) Über die bioelektrischen Erscheinungen beim Furchungsprozess des Eies des Hynobius nebulosus/On bioelectric phenomena with the cleavage process of the egg of Hynobius nebulosus. Protoplasma 22: 597–606.

    Google Scholar 

  • Heid PJ, Voss E, Soll DR (2002) 3D-DIASemb: A computer-assisted system for reconstructing and motion analyzing in 4D every cell and nucleus in a developing embryo. Developmental Biology 245: 329–347.

    Google Scholar 

  • Hyde IH (1905) Difference in electrical potential in developing eggs. American Journal of Physiology 12: 241–275.

    Google Scholar 

  • Jacobson AG (1980) Computer modeling of morphogenesis. American Zoologist 20: 669–677.

    Google Scholar 

  • Jacobson AG, Gordon R (1976a) Changes in the shape of the developing vertebrate nervous system analyzed experimentally, mathematically and by computer simulation. Journal of Experimental Zoology 197: 191–246.

    Google Scholar 

  • Jacobson AG, Gordon R (1976b) Nature and origin of patterns of changes in cell shape in embryos. Journal of Supramolecular Structure 5: 371–380.

    Google Scholar 

  • Jacobson AG, Gordon R (1977) Nature and origin of patterns of changes in cell shape in embryos. Progress in Clinical Biological Research 17: 323–332.

    Google Scholar 

  • Jaffe LF (1995) Calcium waves and development. CIBA Foundation Symposium 188, 4–17.

    Google Scholar 

  • Jaffe LF, Nuccitelli R (1977) Electrical controls of development. Annual Review of Biophysics and Bioengineering 6: 445–476.

    Google Scholar 

  • Johnson MH (2009) From mouse egg to mouse embryo: Polarities, axes, and tissues. Annual Review of Cell and Developmental Biology 25: 483–512.

    Google Scholar 

  • Kalthoff KO (2001) Analysis of Biological Development. Columbus, OH: McGraw-Hill.

    Google Scholar 

  • Karniadakis G, Beskok A, Aluru N (2005) Microflows and Nanoflows: Fundamentals and Simulation. New York: Springer.

    Google Scholar 

  • Keller RE (1978) Time-lapse cinemicrographic analysis of superficial cell behavior during and prior to gastrulation in Xenopus laevis. Journal of Morphology 157: 223–248.

    Google Scholar 

  • Keller RE (1981) An experimental analysis of the role of bottle cells and the deep marginal zone in gastrulation of Xenopus laevis. Journal of Experimental Zoology 216: 81–101.

    Google Scholar 

  • Keller RE, Cooper MS, Danilchik M, Tibbetts P, Wilson PA (1989) Cell intercalation during notochord development in Xenopus laevis. Journal of Experimental Zoology 251: 134–154.

    Google Scholar 

  • Keller RE, Danilchik M (1988) Regional expression, pattern and timing of convergence and extension during gastrulation of Xenopus laevis. Development 103: 193–209.

    Google Scholar 

  • Keller RE, Danilchik M, Gimlich R, Shih J (1985) The function and mechanism of convergent extension during gastrulation of Xenopus laevis. Journal of Embryology and Experimental Morphology 89 (Suppl.): 185–209.

    Google Scholar 

  • Keller RE, Hardin J (1987) Cell behaviour during active cell rearrangement: Evidence and speculations. Journal of Cell Science 8 (Suppl.): 369–393.

    Google Scholar 

  • Keller PJ, Schmidt AD, Wittbrodt J, Stelzer EHK (2008) Reconstruction of zebrafish early embryonic development by scanned light sheet microscopy. Science 322: 1065–1069.

    Google Scholar 

  • Keller R, Shih J, Sater A (1992) The cellular basis of the convergence and extension of the Xenopus neural plate. Developmental Dynamics 193: 199–217.

    Google Scholar 

  • Keller RE, Spieth J (1984) Neural crest cell behavior in white and dark larvae of Ambystoma mexicanum: Time-lapse cinemicrographic analysis of pigment cell movement in vivo and in culture. Journal of Experimental Zooloogy 229: 109–126.

    Google Scholar 

  • Konijn GA, Vardaxis NJ, Boon ME, Kok LP, Rietveld DC, Schut JJ (1996) 4D confocal microscopy for visualisation of bone remodelling. Pathology: Research and Practice 192: 566–572.

    Google Scholar 

  • Lécuyer E, Tomancak P (2008) Mapping the gene expression universe. Current Opinion in Genetics and Development 18: 506–512.

    Google Scholar 

  • Lee H, Bush KT, Nagele RG (1988) Time-lapse photographic study of neural tube closure defects caused by xylocaine in the chick. Teratology 37: 263–269.

    Google Scholar 

  • LeSage AJ, Kron SJ (2002) Design and implementation of algorithms for focus automation in digital imaging time-lapse microscopy. Cytometry 49: 159–169.

    Google Scholar 

  • Megason SG, Fraser SE (2007) Imaging in systems biology. Cell 130: 784–795.

    Google Scholar 

  • Mietchen D, Jakobi JW, Richter HP (2005a) Cleavage plane reorientation in Xenopus early embryos: The role of cell shape. European Journal of Cell Biology 84 (Suppl. 55): 82.

    Google Scholar 

  • Mietchen D, Jakobi JW, Richter HP (2005b) Cortex reorganization of Xenopus laevis eggs in strong static magnetic fields. BioMagnetic Research and Technology 3 (2), doi: 10.1186/1477-1044X-1183-1182

  • Molebny VV, Gordon R, Kurashov VN, Podanchuk DV, Kovalenko AV, Wu J (1998) Refraction mapping of translucent objects with Shack-Harman sensor. Proceedings of SPIE 3548: 31–33.

    Google Scholar 

  • Niehrs C, Keller R, Cho KW, De Robertis EM (1993) The Homeobox gene goosecoid controls cell migration in Xenopus embryos. Cell 72: 491–503.

    Google Scholar 

  • Nieuwkoop PD, Björklund NK, Gordon R (1996) Surface contraction and expansion waves correlated with differentiation in axolotl embryos. II. In contrast to urodeles, the anuran Xenopus laevis does not show furrowing surface contraction waves. International Journal of Developmental Biology 40: 661–664.

    Google Scholar 

  • Nikas G, Paraschos T, Psychoyos A, Handyside AH (1994) The zona reaction in human oocytes as seen with scanning electron microscopy. Human Reproduction 9: 2135–2138.

    Google Scholar 

  • Nouri C, Luppes R, Veldman AEP, Tuszynski JA, Gordon R (2008) Rayleigh instability of the inverted one-cell amphibian embryo. Physical Biology 5(1): 015006.

    Google Scholar 

  • Ortyn WE, Perry DJ, Venkatachalam V, Liang LC, Hall BE, Frost K, Basiji DA (2007) Extended depth of field imaging for high speed cell analysis. Cytometry 71A: 215–231.

    Google Scholar 

  • Parichy DM (1996) When neural crest and placodes collide: Interactions between melanophores and the lateral lines that generate stripes in the salamander Ambystoma tigrinum tigrinum (Ambystomatidae). Developmental Biology 175: 283–300.

    Google Scholar 

  • Pérez-Mongiovi D, Chang P, Houliston E (1998) A propagated wave of MPF activation accompanies surface contraction waves at first mitosis in Xenopus. Journal of Cell Science 111(Pt 3): 385–393.

    Google Scholar 

  • Putta S, Smith JJ, Walker J, Rondet M, Weisrock D, Monaghan J, Samuels AK, Kump K, King DC, Maness NJ, Habermann B, Tanaka E, Bryant SV, Gardiner DM, Parichy FM, Voss SR (2004) From biomedicine to natural history research: Expressed sequence tag resources for ambystomatid salamanders. BMC Genomics 5(1): 54.

    Google Scholar 

  • Questar (2000) Questar QM 100 Photo-Visual Long Distance Microscope. New Hope, PA: Questar Corporation. Available at http://www.company7.com/questar/microscope/qm100.html

  • Radlanski RJ, van der Linden FP, Ohnesorge I (1999) 4D-computerized visualisation of human craniofacial skeletal growth and of the development of the dentition. Annals of Anatomy 181: 3–8.

    Google Scholar 

  • Rivera-Perez JA (2007) Axial specification in mice: Ten years of advances and controversies. Journal of Cellular Physiology 213: 654–660.

    Google Scholar 

  • Rowlands CG, Hwang WS (1998) Cytomegaly of pancreatic D cells in triploidy. Pediatric Pathology and Laboratory Medicine 18: 49–55.

    Google Scholar 

  • Russ JC (2002) The Image Processing Handbook. Boca Raton, FL: CRC Press.

    Google Scholar 

  • Salihagic-Kadic A, Kurjak A, Medic M, Andonotopo W, Azumendi G (2005) New data about embryonic and fetal neurodevelopment and behavior obtained by 3D and 4D sonography. Journal of Perinatal Medicine 33: 478–490.

    Google Scholar 

  • Sampetrean O, Iida SI, Makino S, Matsuzaki Y, Ohno K, Saya H (2009) Reversible whole-organism cell cycle arrest in a living vertebrate. Cell Cycle 8: 620–627.

    Google Scholar 

  • Sargent R (2009) Gigapixel Panoramas, Gigapan overview, Global Connection Project. Available at http://www.cs.cmu.edu/∼globalconn/gigapan.html

  • Schnabel R, Hutter H, Moerman D, Schnabel H (1997) Assessing normal embryogenesis in Caenorhabditis elegans using a 4D microscope: Variability of development and regional specification. Developmental Biology 184: 234–265.

    Google Scholar 

  • Schott R (2009) GigaPanner: Exploring the Creation and Uses of GigaPixel Images with a Focus on the GigaPan Project. Available at http://www.gigapanner.com

  • Schreckenberg GM, Jacobson AG (1975) Normal stages of development of the axolotl Ambystoma mexicanum. Developmental Biology 42: 391–400.

    Google Scholar 

  • Sims MH, Dodson KE (2008) Gigapan as a tool for scientific collaborations. Abstract #IN41B-1148. In: American Geophysical Union, Fall Meeting 2008. Available at http://adsabs.harvard.edu/abs/2008AGUFMIN41B1148S

  • Smith JJ, Putta S, Walker JA, Kump DK, Samuels AK, Monaghan JR, Weisrock DW, Staben C, Voss SR (2005) Sal-Site: Integrating new and existing ambystomatid salamander research resources. BMC Genomics 6: 181.

    Google Scholar 

  • Tsang CKG, Kler (2002) 3D Imaging of Spherical Objects. Undergraduate Thesis. Winnipeg: Department of Electrical and Computer Engineering, University of Manitoba.

    Google Scholar 

  • Twitty VC (1928) Experimental studies on the ciliary action of amphibian embryos. Journal of Experimental Zoology 50: 319–344.

    Google Scholar 

  • Ubbels GA, Hara K, Koster CH, Kirschner MW (1983) Evidence for a functional role of the cytoskeleton in determination of the dorsoventral axis in Xenopus laevis eggs. Journal of Embryology and Experimental Morphology 77: 15–37.

    Google Scholar 

  • Uretz RB, Bloom W, Zirkle RE (1954) Irradiation of parts of individual cells II. Effects of an ultraviolet microbeam focused on parts of chromosomes. Science 120: 197–199.

    Google Scholar 

  • Wang P, Hayden S, Masui Y (2000) Transition of the blastomere cell cycle from cell size-independent to size-dependent control at the midblastula stage in Xenopus laevis. Journal of Experimental Zoology 287: 128–144.

    Google Scholar 

  • Webb SE, Miller AL (2003) Imaging intercellular calcium waves during late epiboly in intact zebrafish embryos. Zygote 11: 175–182.

    Google Scholar 

  • Wilson PA, Keller RE (1991) Cell rearrangement during gastrulation of Xenopus: Direct observation of cultured explants. Development 112: 289–300.

    Google Scholar 

  • Wolfe MF, Goldberg R (2000) Rube Goldberg: Inventions. New York: Simon and Schuster.

    Google Scholar 

  • Yoneda M, Kobayakawa Y, Kubota HY, Sakai M (1982) Surface contraction waves in amphibian eggs. Journal of Cell Science 54: 35–46.

    Google Scholar 

  • Zimmermann T, Siegert F (1998) 4D confocal microscopy of Dictyostelium discoideum morphogenesis and its presentation on the Internet. Development Genes and Evolution 208: 411–420.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Gordon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gordon, R. Google Embryo for Building Quantitative Understanding of an Embryo As It Builds Itself. II. Progress Toward an Embryo Surface Microscope. Biol Theory 4, 396–412 (2009). https://doi.org/10.1162/BIOT_a_00010

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1162/BIOT_a_00010

Keywords

Navigation