# Mixed-Signal Architectures for High-Efficiency and Low-Distortion Digital Audio Processing and Power Amplification

- 1.5k Downloads

**Part of the following topical collections:**

## Abstract

The paper addresses the algorithmic and architectural design of digital input power audio amplifiers. A modelling platform, based on a meet-in-the-middle approach between top-down and bottom-up design strategies, allows a fast but still accurate exploration of the mixed-signal design space. Different amplifier architectures are configured and compared to find optimal trade-offs among different cost-functions: low distortion, high efficiency, low circuit complexity and low sensitivity to parameter changes. A novel amplifier architecture is derived; its prototype implements digital processing IP macrocells (oversampler, interpolating filter, PWM cross-point deriver, noise shaper, multilevel PWM modulator, dead time compensator) on a single low-complexity FPGA while off-chip components are used only for the power output stage (LC filter and power MOS bridge); no heatsink is required. The resulting digital input amplifier features a power efficiency higher than 90% and a total harmonic distortion down to 0.13% at power levels of tens of Watts. Discussions towards the full-silicon integration of the mixed-signal amplifier in embedded devices, using BCD technology and targeting power levels of few Watts, are also reported.

## Keywords

Power Efficiency Total Harmonic Distortion Design Space Exploration Noise Shaping Power Stage## 1. Introduction

Small size, low-cost and high-efficiency audio amplifiers, integrated as much as possible with digital audio signal processing tasks in the same embedded device, are required in several consumer applications: home and car entertainment, computer/portable multimedia players and, for low power levels, hearing aids devices. Conventional linear amplifiers feature low-distortion performance but have several disadvantages versus market needs [1, 2]: they are too heavy and energy inefficient and the achievable power density is limited by the physical size and cost of cooling hardware and power devices. An extra Digital-to-Analog Converter (DAC) is needed, before the analog amplifier, for digital sources: CD, Super Audio CD and DVD supports, MP3 files, and Digital Audio Broadcasting.

### 1.1. The State of the Art of Digital Power Audio Amplifiers

A direct conversion of the input PCM stream to PWM is not useful: PWM is a nonlinear technique and the intermodulation between the PWM carrier frequency and the baseband audio signal leads to poor-quality amplifiers [7]. To this aim, in academia and industry [8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24], several techniques have been proposed to improve the basic scheme in Figure 1: new digital audio processing algorithms [12, 13, 14, 15, 17, 18, 19, 20, 22, 23, 24] or novel feedback schemes [9, 10, 11, 21] or multilevel PWM power bridges [16] have been published to correct the distortions introduced by the PWM modulation or by the nonideal behaviour of the power stage. However the new proposed techniques require extra hardware resources; the performance gain is paid in terms of increased circuital complexity and cost. The overall amplifier often requires multiple chips for the digital part (including digital signal processor and/or ASIC and/or FPGA), plus ADC and high-order analog filters for the feedback plus multiple power transistors and gate drivers for multi level PWM. As a result high-performance systems require high circuit complexity, implemented using multiple chips and often multiple-boards, and are not suitable for consumer applications or embedded devices. Solutions with lower complexity are usually obtained at the expense of audio quality reduction.

### 1.2. Aim and Outline of This Work

This work explores the design space of digital audio amplifiers to find an optimal mixing of different analog and digital techniques. The resulting architecture aims at achieving optimal performance in terms of low-distortion and high power efficiency while still allowing a low-cost implementation: all the digital processing part integrated in a single device, for example, a low-complexity FPGA, plus off-chip components only for the power stage, made up of a MOS H-bridge and an LC filter but without any heat sink.

Most state-of-the-art techniques propose specific optimizations for just a part of the scheme in Figure 1; when integrating together different known techniques the relevant hardware overheads add up while the extra gain in performance can be negligible. However, the exhaustive design space exploration of digital power audio amplifiers is not straightforward since it needs fast but still accurate models involving the codesign of heterogeneous components: computation intensive processing algorithms at functional level with hardware components at physical level; low power digital and mixed-signal circuits with analog power devices; silicon integrated circuits with discrete devices. Hereafter Section 2 presents a platform-based modelling flow and the cost metrics used to drive the design space analysis. The models used to find optimal trade-offs between complexity, power efficiency, distortion and sensitivity are presented in Section 3 together with architectural comparison results. Section 4 shows the prototyping of the selected architecture targeting power levels of tens of Watts. Section 5 compares the obtained results versus the state of the art and discusses the extension of the work to fully integrated amplifiers for power levels of few Watts. Conclusions are drawn in Section 6.

## 2. Platform-Based Design Flow and Metrics

### 2.1. Design Metrics Definition

The definition of the multiple cost metrics to be optimized is essential to drive the design space exploration and the correct comparison of different architectures. The design metrics are the audio signal distortion, the power efficiency, the circuit complexity and the architecture sensitivity to parameter changes. The input signals are PCM samples with a bit size *n* from 16 to 24 and a sample frequency Open image in new window between 44 kS/s and 96 kS/s (the lower values for frequency and bit-size are typical of audio CD while the higher values are used in audio DVD). The target output power, Pout, amounts to tens of Watts with power efficiency levels up to 90%. Reported data in this paper refer to the example case of max Pout of 70 Wrms (or 35 Wrms) delivered to a 4 Open image in new window (or 8 Open image in new window ) speaker. The total harmonic distortion (THD) considered for High-Fidelity (Hi-Fi) is a level lower than 0.2%, the optimal target is 0.1%. As discussed in [1] there are high-end products for professional applications, using linear amplifiers, with THD figures below 0.001%; however the subjective sensitivity of the hearing human system to THD levels below 0.3% is often negligible. Most Hi-Fi amplifiers, for example, Sony STR-DE445 [13], for consumer home or car markets have a THD of 0.2%. The considered frequency response in this paper is 20 Hz–20 kHz, although THD optimizations focus on the range 500 Hz to 2 kHz where the hearing human system is mainly sensible and very often music signals are below 16-17 kHz [1]. The target circuit complexity for the digital processing circuitry amounts to tens of equivalent ASIC gates, a value that can be fitted in a single low-cost FPGA leaving space to integrate other audio processing tasks thus realizing a complete audio acquisition/playing system in a single embedded device.

### 2.2. Platform-Based Design Flow

To allow a fast but still accurate design space exploration we followed a meet-in-the-middle approach between bottom-up and top-down strategies [25]. A configurable modelling platform has been built starting from libraries of analog and digital building block components. A library of accurate spice models has been derived bottom-up for the hardware components whose nonideal characteristics and nonlinearity affect the behaviour of the power audio amplifier: power MOS, power supply, analog filters, OpAmp and comparators optionally used in the feedback loop. As example, we have created Spice models for the power MOS in [26], used also in the prototyping phase; such models consider all key electrical parameters [27] and their dependence on input driving signal ( Open image in new window ) and output delivered power: MOS transfer curves, drain source breakdown voltage Open image in new window , Open image in new window on resistance, gate charge Open image in new window , body diode reverse recovery charge Open image in new window , internal gate resistance Open image in new window , MOS rise and fall times Open image in new window and Open image in new window and switching frequency Open image in new window , transistor packaging and thermal characteristics. The Spice models have been integrated with parametric and fixed-point Simulink models for the signal processing algorithms proposed to enhance the basic scheme in Figure 1, see details in Section 3. The resulting Spice/Simulink environment is then used top-down to build multiple architectures (proper configuring and combining the building block models) and to allow their fast but still accurate comparison. The considered design metrics are those in Section 2.1. This analysis allows a first selection of the most promising architectures; for them the comparison is further refined in a second step using HDL models for the digital audio algorithms.

Synthesized on different technologies (standard-cells CMOS libraries or SRAM-based FPGAs) the HDL models permit the evaluation of the gate complexity and power consumption of the digital circuitry. The selected architectures are finally prototyped, and the real performances measured, using FPGA technology plus a discrete power output stage.

## 3. Mixed-Signal Architectural Exploration

### 3.1. Oversampler

To reduce the output THD an oversampler is added before the PCM to PWM conversion in the digital domain, see Figure 2. Oversampling by a parametric factor *M* is realized first inserting *M*-1 zeros after each original sample (zero padding); the data stream is then processed with an interpolating filter to remove high frequency spurious repetitions of the baseband signal. The higher the oversampling factor *M* is, the higher ( Open image in new window ) the PWM carrier frequency is and hence the transition bandwidth for the LC output filter used to remove intermodulation distortion. Thus, a high over-sampling factor *M* simplifies the design of the LC analog filter at the expense of an increased complexity for the digital interpolating filter.

*M*and for the oversampling filter structure, the masks in Table 1 have been used to specify the filter magnitude response. Mask 1 is known in literature [28, 29] while mask 2 is a new proposal of this work. Compared to mask 1, mask 2 features more stringent requirements in terms of pass-band ripple and stop-band attenuation (needed to meet a target THD Open image in new window 0.2%) but allows for a larger transition band; indeed music signals rarely exceed the 17 kHz imposed by a pass-band of 0.4 Open image in new window and hence the pass-band 0.45 Open image in new window in mask 1 is often excessive.

Interpolating filter mask specifications.

Mas type | Pass-band | Stop-band | Pass-band ripple | Stop-band attenuation |
---|---|---|---|---|

1 | Open image in new window 0.1 dB | Open image in new window 50 dB | ||

2 | Open image in new window 0.02 dB | Open image in new window 60 dB |

Once specified the magnitude response of the filter it is important to define its architectural implementation (FIR or IIR, windowing type, direct or cascade multistage structure, parallel or iterative implementation of the multiply and accumulate-MAC- unit, data bit width), since its hardware cost can represent the main bottleneck of the whole audio system [28, 29, 30, 31, 32].

*Z*, of some hundreds as reported in Table 2. Equiripple and Kaiser FIR types are considered in Table 2; analysis carried out using Gaussian, Hamming and Hanning FIR windows lead to similar results of the Kaiser FIR type. Such high filter orders entail a high computational complexity which amounts to roughly Open image in new window MAC operations per sample. On the contrary using an IIR structure the same magnitude response can be obtained with a much lower filter order: see Table 2 which considers Butterworth, Chebychev and elliptic IIR filters.

FIR and IIR order for the interpolating filter, oversampling x8.

FIR | IIR | ||||
---|---|---|---|---|---|

Equiripple | Kaiser | Butt. | Cheb. | Elliptic | |

Mask 1 | 193 | 233 | 38 | 13 | 7 |

Mask 2 | 129 | 146 | 24 | 11 | 7 |

*M*much higher than 8. As example Table 3 reports the PWM carrier frequency Open image in new window , the filter order and the MAC operations needed for Equiripple and Kaiser FIR filters when varying the oversampling factor from 8 to 128 with CD-quality Open image in new window kS/s.

Interpolating filter complexity and PWM frequency versus *M.*

| Mas type | Equiripple | Kaiser | |||
---|---|---|---|---|---|---|

order | order | kHz | ||||

8 | 1 | 193 | 68.1 | 233 | 82.2 | 352.8 |

8 | 2 | 129 | 45.5 | 146 | 51.5 | |

16 | 1 | 386 | 272.4 | 469 | 330.9 | 705.6 |

16 | 2 | 257 | 181.3 | 291 | 205.3 | |

32 | 1 | 772 | 1089 | 938 | 1324 | 1411.2 |

32 | 2 | 515 | 726,8 | 581 | 819,9 | |

64 | 1 | 1544 | 4358 | 1875 | 5292 | 2822.4 |

64 | 2 | 1029 | 2904 | 1161 | 3277 | |

128 | 1 | 3087 | 17425 | 3749 | 21162 | 5644.8 |

128 | 2 | 2057 | 11611 | 2321 | 13102 |

From Table 3 it is clear that (i) the computational cost of a direct FIR implementation amounts to tens of millions MAC/s for Open image in new window and becomes prohibitive, in the range of tens of Giga MAC/s, when *M* grows up to 128; (ii) considering off-chip power output bridges (see Section 3.6) with typical PWM frequencies within 1 MHz, oversampling factors *M* higher than 8 or 16 should be avoided.

- (1)
Polyphase filter implementation: in the oversampling unit Open image in new window -1 samples out of

*M*are zeros (due to zero padding) and hence a polyphase structure reduces the required MAC operations for the interpolating filter by a factor*M*. - (2)
Multistage cascade realization: the oversampling unit can be realized through a cascade of

*S*multiple stages where the*i*th stage realizes an oversampling by a factor*Mi*(with Open image in new window ) with a filter of reduced order Open image in new window .

Interpolating filter complexity, polyphase, and multistage units.

Mask type | Filter type | Polyphase cost Open image in new window | Filter order, | |||
---|---|---|---|---|---|---|

1 | Equiripple | 3.26 | 48 | 7 | 3 | — |

2 | Equiripple | 3.26 | 32 | 11 | 5 | — |

1 | Kaiser | 5.07 | 59 | 12 | 8 | — |

2 | Kaiser | 4.72 | 37 | 15 | 10 | — |

1 | Equiripple | 4.32 | 48 | 7 | 3 | 3 |

2 | Equiripple | 4.32 | 32 | 11 | 5 | 3 |

1 | Kaiser | 7.54 | 59 | 12 | 8 | 7 |

2 | Kaiser | 7.89 | 37 | 15 | 10 | 9 |

1 | Equiripple | 4.67 | 48 | 7 | 11 | — |

2 | Equiripple | 5.20 | 32 | 11 | 16 | — |

1 | Kaiser | 6.48 | 59 | 12 | 16 | — |

2 | Kaiser | 6.48 | 37 | 15 | 20 | — |

Comparing the results of Tables 3 and 4 it is clear that, exploiting the multistage decomposition and the poly-phase techniques, the filter complexity is reduced to few millions of MAC/s.

The computational burden in Table 4 is roughly the same for the two mask types; in the rest of the work mask 2 is used since it ensures a lower pass-band ripple. Using the Equiripple filter type a computational saving of roughly 30% is achieved versus the Kaiser type.

By adopting an oversampling factor Open image in new window , 4-stage polyphase FIR filter of Equiripple type with filter mask 2, the required complexity can be sustained for both CD-quality and DVD-quality inputs realizing in hardware a single MAC unit with 1 MAC/cycle capability and with a clock frequency below 10 MHz. The use of higher oversampling factors is still limited by the switching frequency of the power output bridge (see Section 3.6).

Finally, the bit-true arithmetic of the MAC hardware unit has been determined: using a 12-bit fixed-point data width the circuit complexity is greatly reduced versus a floating—point arithmetic implementation while the reduction of audio reproduction quality is negligible.

### 3.2. Noise Shaper

*n*-bit oversampled PCM signal to PWM leads to a minimum impulse time Open image in new window , for example, roughly 0.25 nanoseconds considering Open image in new window and the 44.1 kS/s 16-bit PCM signal of audio CDs. Such values are too low for commercial power transistors [26, 27] with rise and fall times,

*T*

_{ r }and

*T*

_{ f }, of tens of nanoseconds. To reduce such requirement while keeping unaltered source audio quality, a noise shaper is used. Its architecture is shown in Figure 3: it reduces the used bits from

*n*to

*p*, while the added quantization noise can be spread outside the audio band using a Open image in new window order FIR shaping filter. In our model the noise shaper is parametric in terms of output bit width

*p*and filter order

*K*. An high value for

*K*leads to improved SNR performances but also to an increased circuit complexity and to the risk of loop instability. Our analysis proves that stable loops and good trade-offs between audio performance and circuit complexity can be achieved using

*p*between 4 and 8 bits and noise shapers with an FIR filter up to Open image in new window order. Figure 4 reports the magnitude response of the selected noise shaping filter for the prototyping phase described in Section 4. The noise shaper transfer function NTF is Open image in new window , being Open image in new window the shaping filter response.

The most suited values for *M* and *p* depend on the time response of the used power MOS; the minimum impulse time Open image in new window should be comparable to the sum of *T* _{ r } and *T* _{ f }. As example for CD-audio signals, using Open image in new window , Open image in new window leads to a Open image in new window of 11 nanoseconds compatible with the timing of the selected power MOS devices [26].

### 3.3. Cross Point Estimator for NPWM

Simplified 2-point estimators for NPWM, using linear interpolation (LI) or delta compensation ( Open image in new window ), allow a single chip implementation of the whole signal processing part. Here the crossing-point is estimated using the first-order formulas reported in Figure 5 requiring just 1 multiply/sample for Open image in new window and 1 division/sample for LI. Differently from [14, 15], where LI is preferred to Open image in new window in case of micropower speech amplifiers not using oversampling, our simulations prove that the THD reduction using NPWM-LI or - Open image in new window is the same: a factor of 2 lower than UPWM. Thus, the use of Open image in new window C is preferred since it is less complex than LI requiring the computation of a multiplication/sample instead of a division/sample.

### 3.4. Multilevel PWM

A classic PWM has Open image in new window levels but also Open image in new window levels PWM and Open image in new window PWM techniques, up to 9 in [16], can be implemented. In 2-state PWM the signal is switching between maximum and minimum supply voltage values, the two states Open image in new window and Open image in new window . Even for low-level signals binary modulation continuously provides energy to the LC filter and to the load. If the modulating input is null the PWM wave is still switching with a 50% duty cycle. The signal provided to the load is null but switching losses are paid thus reducing power efficiency. The 3-state PWM signal switches between Open image in new window and 0 when the input signal is positive, otherwise between Open image in new window and 0. In case of null input there is no switching activity and hence switching losses are reduced. The 3-state PWM modulator reduces by a factor 2 the voltage swing supported by the power MOS transistors allowing also the reduction of electromagnetic interference (EMI) and a better behaviour of the power devices. By further increasing the number of levels *L* the EMI and the switching losses can be further reduced. However while 2 and 3 levels PWM can be implemented with a single power MOS bridge, a PWM with levels Open image in new window require multiple power bridges, with matched behaviour. This increases remarkably the amplifier complexity and cost. Our analysis proves that for Open image in new window the complexity increase is not justified by a performance gain which is limited if compared to ternary PWM.

While the power output stage can be the same for 2 and 3 levels PWM, the digital circuitry is different. To generate a 2-state PWM digital wave each *p*-bit noise shaped and oversampled sample is compared to a digital sawtooth waveform. The 3-state PWM modulator is realized using two 2-state PWM modulators, one for positive input samples and the other for negative samples: after controlling the sign of each sample only one of the two 2-state modulators is enabled. Although 3-state PWM modulation doubles the cost of the 2-state one the complexity of the whole system is comparable. Indeed, as shown in Section 4, the overall digital circuitry complexity is dominated by the noise shaping and oversampling filters which are common to 3- and 2-state PWM. Summarizing 3 levels PWM is the best trade-off between performance and circuit complexity.

### 3.5. Dead Time Insertion

*tg*versus the THD obtained without any time guard. In Figure 6 the THD is reduced up to a factor 4 using a

*tg*of 30 nanoseconds (curve "typical"). The example architecture considered in Figure 6 is that with oversampling and noise shaping sized as in Section 3.2 plus ternary PWM, power stage of Section 3.6, no feedback loop. The optimal value for

*tg*in Figure 6 is derived from architecture simulations; a mathematical formula in closed form is not available. When considering PVT (process, voltage and temperature) variations of the implementing hardware devices (e.g., the FPGA and the power components of the prototype in Section 4) the THD reduction curve varies; see as example in Figure 6 the curves reported with dashed lines corresponding to the "min" and "max" corner cases. Using the

*tg*value calculated in nominal conditions (30 nanoseconds in our case, see "typ" curve in Figure 6) a suboptimal, but still noticeable, THD improving factor is obtained versus the case with no time guard insertion. In Figure 6 with

*tg*= 30 nanoseconds the THD reduction versus the case without any time guard is from 0.25 to 0.55 depending on the PVT conditions. Moreover, as discussed in Section 3.5, the use of a proper feedback scheme can reduce the architecture sensitivity to parameters variation.

### 3.6. Output Power Stage

*Vdd*in Figure 7 is sized at 25 V. The LC filter in Figure 7 is a differential 4th-order Butterworth with 20 kHz cutoff. In our model we compared several LC filtering stages, with different filter order and considering Butterworth, Chebychev and Elliptic types. Figure 8 reports the THD achieved using Butterworth, Chebychev (0.5 dB pass-band ripple) and Elliptic (0.1 dB pass-band ripple) analog filters with a cutoff frequency of 20 kHz and considering different filter orders. From Figure 8 it can be noted that the performances of the filters are similar (elliptic filters are not defined for orders lower than 3). Butterworth type is preferred to avoid ripple in the pass-band. After the 4th order the THD reduction obtained increasing the filter complexity is minor.

### 3.7. Feedback Topologies

*Verr*is sent to a lowpass analog controller, with transfer function C(s), extracting the DC component of the error. In our model we considered and simulated for C(s) an active filter (OpAmp plus RC network) with parametric cutoff frequency and filter order. The generated DC error level is then used in the PWM correction unit of Figure 2 to properly insert time delays in the PWM modulator thus driving the power MOS stage with a corrected PWM signal. Note that such approach is similar to some feedback algorithms proposed in literature: for example, in [9] C(s) is realized as a simple Open image in new window order integrator while in [11] a more performing algorithm called PEDEC (Pulse Edge Delay Error Control) is used for PWM correction, starting from the generated DC error level. The results in Figures 9 and 10 for the amplifier nicknamed A2 refer to a feedback configuration with a Open image in new window order lowpass C(s) filter and using PEDEC as compensating technique. This approach provides good results but is not useful for a low-complexity and low-cost realization since it requires an extra analog feedback network.

With respect to that adopted in A2, more complex mixed-signal feedback correction schemes have been proposed in literature [10, 18]. In these schemes the output PWM power signal, after attenuation and filtering, is converted in the digital domain through extra ADCs: 7-bit flash ADC in [10] and 10-bit SAR ADC in [18]. In the digital domain similar operations to those of A2 are carried out. These feedback schemes using ADC and operating in the digital domain have been also modelled. The achievable THD and sensitivity performances are slightly better than those of A2 while the hardware overhead is much higher: an attenuator, a filter and an ADC are required in the analog domain plus a digital correcting unit in the digital one. Being too complex the feedbacks schemes with ADCs are not considered in the comparison of Figures 9 and 10.

A simpler but effective feedback correction technique to reduce the amplifier sensitivity to parameter changes is derived from [21]: the sign of the output current provided to the load is used as 1-bit control to check periodically which output transistor is on and to change consequently the inserted time-guard value. In [21] this technique has been proposed for the control of a 2-state PWM power-bridge. In this work this approach has been redesigned to be integrated with oversampling, noise shaping, Open image in new window C cross point estimation and 3-level PWM creating a new amplifier scheme: A3, 1-bit feedback extension of the open loop A1. In our implementation we selected the value of 10 nanoseconds as resolution of correction for the PWM waveform.

With reference to max 70 Wrms delivered to a 4 Open image in new window speaker, Figures 9 and 10 compare the amplifier schemes A1, A2 and A3 in terms of power efficiency and THD. The maximum power efficiency, up to roughly 95% in Figure 9, is achieved by the open loop scheme A1. With such high-efficiency each power MOS of the full bridge is dissipating less than 1 W avoiding extra cooling hardware. These results outperform classic DAC plus analog amplifier solutions: as example the hybrid analog scheme in [5] has a maximum power efficiency below 77%. The schemes with feedback topologies, A2 and A3, achieve similar efficiency, higher than 90%, only for power levels higher than 25–30 Wrms. Concerning THD, the lower distortion is achieved around 40–50 Wrms. The minimum THD is below the target of 0.2%; the use of feedback schemes allows reaching the target THD on a wider frequency range versus the open loop A1 scheme. Between A2 and A3 amplifiers the latter is preferred since it improves the THD and sensitivity performance of A1 but with minimal complexity overhead and minimal efficiency losses.

## 4. Prototyped Digital Audio Amplifier

From the design space exploration carried out in Section 3 the amplifier architecture, summarized hereafter, resulted as an optimal trade-off between circuit complexity, power efficiency, output distortion and low sensitivity to parameter changes. The digital part includes: an oversampler by a factor Open image in new window using an Equiripple 4-stage polyphase FIR interpolating filter, a cross point estimator based on Open image in new window C technique realizing a NPWM scheme, a noise shaper with Open image in new window output bits and a 5th-order noise shaping filter, 3-level PWM generation, correction of PWM words through the insertion of time guard intervals also as a function of a 1-bit signal feedback.

The digital processing part, implemented in HDL, has been synthesized in different CMOS standard-cells technologies (90 nm 1 V supply voltage and 180 nm 1.8 V supply voltage) resulting in a digital complexity of 15.2 Kgates, mainly due to the noise shaping and interpolating filters. The low circuit complexity allows the fitting of the digital circuitry on several low-cost SRAM-based FPGA devices. As example the processing part of the amplifier occupies 90% of a Xilinx Virtex XCV100 or 58% of a Xilinx Spartan3 200. Such devices are available for large volume production at a cost of few dollars. Hence the low circuit complexity of the proposed architecture allows for a low-cost implementation. The power consumption for the above cited implementations is in the order of few hundreds of mW, as example 100 mW when integrating the amplifier in the XCV100 and playing 44.1 kS/s CD-quality audio signals.

Summary of amplifier characteristics.

Design metric | Value | Test conditions |
---|---|---|

Efficiency | 94% at 45 Wrms | 16-bit 44.1 kS/s signal, 1 kHz tone |

THD | 0.13% at 45 Wrms | |

Pmax | 70 Wrms | 4 Open image in new window load |

*1b feedback*) and without (

*open loop*) are considered. From Figure 11 it is worth noting how the THD performance degradation due to parameter change is lower in the amplifier with feedback.

## 5. Comparison to the State of the Art and Future Work

### 5.1. Comparison to the State of the Art

When compared to the state of the art of digital input power amplifiers our prototype stands for its low-complexity, while keeping high power efficiency and low THD levels. The distortion levels, THD below 0.2% at 1 kHz in the power range 35–60 Wrms with a minimum of 0.13% at 45 Wrms (see A3 in Figure 10), are suitable for audio Hi-Fi applications. Other works in literature achieve lower THD values, as example in [13] the THD is 0.02% for similar power levels of 50 W, but at the expense of a lower efficiency and an increased complexity. The power efficiency is 80% in [13] while in our work is higher than 90%. The digital processing tasks in [13] require the use of multiple boards (1 DSP board for the digital audio processing plus 1 FPGA board for PWM processing) while our architecture just requires 1 low-cost FPGA having a bounded circuit complexity of 15 Kgates. The multiple boards digital amplifier in [13] features also a configuration with 90% power efficiency but with a THD of 0.2%. In [16] with a 9 level PWM inverter the achieved performances of 0.25% THD and 80% efficiency are worse than our results. This confirms our analysis in Section 3.4 that 3-level PWM is the optimal choice for the output stage. Compact solutions using a single chip for the digital part, as in our work, and without heatsink have been proposed in [9, 19, 23, 31, 32]. However [19] is missing the feedback scheme needed, as proved in Section 4, against parameter changes; in [9] the efficiency levels are lower than those achieved by our scheme. The FPGA-based audio amplifier in [23] is missing feedback and NPWM techniques; it has a power efficiency of 80% and a THD of 1% both worse than our achieved results. In [31, 32] only the interpolation filter is implemented occupying a whole Spartan FPGA. With respect to our previous conference paper [20], where only UPWM is implemented and a lower oversampling factor and a less-performance FIR interpolating filter are used, the audio processing system in this work has been improved including the digital techniques for NPWM, more accurate models for all the analog components, a more performing interpolating filter. The prototyped architecture in this work versus [20] achieves a much better THD value, predicted by the simulations and confirmed by measures on the prototype. Finally in some works [10, 17, 24], the shown results refer to simulations or prototypes only of the low-power PWM generator without including a real prototyped power stage. As discussed in this work, and widely proved in literature, the nonideal behaviour of the power stage is a key issue in power audio amplifiers.

### 5.2. Future Work

The proposed platform-based approach has been used also to define the optimal architecture of digital power audio amplifiers using other complementary power MOS devices, such as the IR530 and IR9530. The achieved results with these MOS devices prove that, targeting a power level of 45 Wrms on an 8 Open image in new window load, optimal distortion performances below 0.2% can be reached in the range 17–35 Wrms with a power efficiency higher than 90%. The resulting architecture is similar to that discussed in Section 4 with the exception of the tuning of some parameters specifically optimized for the characteristics of the new power devices.

As work extension we are applying the same methodology to the design of a fully integrated digital input audio amplifier targeting maximum power levels of 1-2 W. Such amplifiers of few Watts are needed for battery-power terminals with audio playing capability [33, 34]. The design of the amplifier is carried out using an architecture similar to that in Section 4 fitted on a BCD 0.35 Open image in new window m technology providing CMOS transistors for the digital part and DMOS transistors for the analog power part. The only off-chip circuit is the LC lowpass filter. Postlayout characterization proves that the digital amplifier can be integrated in less than 2 mm^{2}. The integrated power stage is an inverter with NDMOS sized with Open image in new window mm and Open image in new window m supporting, with low Open image in new window on of few m Open image in new window , output currents of 0.14 A on output load of 100 Open image in new window .

## 6. Conclusions

The design of digital audio power amplifiers is presented in the paper. A modelling platform has been built to allow a fast but still accurate exploration of the mixed-signal design space which involves the codesign of (i) audio processing algorithms with physical characteristics of hardware components and of (ii) low-power integrated digital circuits with analog power devices. Different amplifier architectures have been modelled, simulated and compared to find optimal trade-offs among different cost-functions: low-distortion, high power efficiency, low circuit complexity and low sensitivity to parameter changes. The selected amplifier architecture has been prototyped, for power levels of tens of Watts, implementing the digital processing part on a single low-complexity FPGA while off-chip components are used for the power output stage, no heatsink is required. The resulting digital amplifier, compared with the state of the art, features a low circuit complexity while keeping good power efficiency, higher than 90%, and low-distortion levels, down to 0.13%. As future extension the realization of a fully integrated digital amplifier in BCD technology is presented for power levels of few Watts.

## Notes

### Acknowledgment

The work has been partially supported by the SHAPES FP6 EU project.

## References

- 1.Self D:
*Audio Power Amplifier Design Handbook*. 4th edition. Newnes, Oxford, UK; 2006.Google Scholar - 2.Saponara S:
**Current-feedback architecture for high-slew-rate and low-THD high-end audio amplifier.***Electronics Letters*2008,**44**(25):1433-1434. 10.1049/el:20082660CrossRefGoogle Scholar - 3.Walker G:
**A class B switch-mode assisted linear amplifier.***IEEE Transactions on Power Electronics*2003,**18**(6):1278-1285. 10.1109/TPEL.2003.818825CrossRefGoogle Scholar - 4.Ginart AE, Bass RM, Leach WM Jr., Habetler TG:
**Analysis of the class AD audio amplifier including hysteresis effects.***IEEE Transactions on Power Electronics*2003,**18**(2):679-685. 10.1109/TPEL.2003.809330CrossRefGoogle Scholar - 5.Saponara S, Terreni P:
**Switching-based topologies for high-efficiency audio amplifiers.***Proceedings of the International Symposium on Signals, Circuits and Systems (ISSCS '05), 2005***1:**283-286.Google Scholar - 6.Poulsen S, Andersen M:
**Hysteresis controller with constant switching frequency.***IEEE Transactions on Consumer Electronics*2005,**51**(2):688-693. 10.1109/TCE.2005.1468020CrossRefGoogle Scholar - 7.Hiorns RE, Sandler MB:
**Power digital to analogue conversion using pulse width modulation and digital signal processing.***IEE Proceedings G*1993,**140**(5):329-338.Google Scholar - 8.Botti E, Grosso A, Meroni C, Stefani F:
**Digital input audio power amplifiers in 0.6-****μ****m BCD technology: two examples.***Proceedings of the IEEE International Symposium on Power Semiconductor Devices & ICs (ISPSD '04), 2004, Kitakyushu, Japan***16:**93-96.Google Scholar - 9.Grosso A, Botti E, Stefani F, Ghioni M:
**A 250 W audio amplifier with straightforward digital input-PWM output.***Proceedings of the European Solid-State Circuits Conference (ESSCIRC '05), 2002*225-228.Google Scholar - 10.Midya P, Roeckner B, Bergstedt S:
**Digital correction of PWM switching amplifiers.***IEEE Power Electronics Letters*2004,**2**(2):68-72. 10.1109/LPEL.2004.834795CrossRefGoogle Scholar - 11.Nielsen K:
**PEDEC—a novel pulse referenced control method for high quality digital PWM switching power amplification.***Proceedings of IEEE Power Electronics Specialist Conference (PESC '95), 1998*200-208.Google Scholar - 12.Saponara S, Fanucci L, Terreni P:
**Oversampled and noise-shaped pulse-width modulator for high-fidelity digital audio amplifier.***Proceedings of the IEEE International Conference on Electronics, Circuits, and Systems (ICECS '06), 2006, Nice, France*830-833.Google Scholar - 13.Pascual C, Song Z, Krein PT, Sarwate DV, Midya P, Roeckner WBJ:
**High-fidelity PWM inverter for digital audio amplification: spectral analysis, real-time DSP implementation, and results.***IEEE Transactions on Power Electronics*2003,**18**(1):473-485. 10.1109/TPEL.2002.807102CrossRefGoogle Scholar - 14.Gwee B-H, Chang JS, Adrian V:
**A micropower low-distortion digital class-D amplifier based on an algorithmic pulse width modulator.***IEEE Transactions on Circuits and Systems I*2005,**52**(9):934-949.Google Scholar - 15.Gwee B:
**Micropower low-distortion digital pulse width modulator for a digital class D amplifier.***IEEE Transactions on Circuits and Systems II*2002,**49**(5):1-13.Google Scholar - 16.Antunes VME, Silva JF, Fernão-Pires V:
**Experimental evaluation of a digital multi-level audio power amplifier.***Proceedings of the IEEE Annual Power Electronics Specialists Conference (PESC '04), 2004***2:**1175-1179.Google Scholar - 17.Vlassopoulos N, Reisis D, Lentaris G,
*et al*.:**An approach for efficient design of digital amplifiers.***Proceedings of the IEEE International Symposium on Circuits and Systems (ISCAS '06), 2006*5531-5534.Google Scholar - 18.Spectrum Design Solutions Inc :
**Digital audio solutions application brief.**2006.Google Scholar - 19.Apogee :
**Direct digital amplification (DDX) white paper.**2002.Google Scholar - 20.Saponara S, Terreni P:
**Mixed-signal design of a digital input power amplifier for automotive audio applications.***Proceedings of the Conference on Design, Automation and Test in Europe (DATE '06), 2006***2:**212-216.Google Scholar - 21.Jeong S-G, Park M-H:
**The analysis and compensation of dead time effects in PWM inverters.***IEEE Transactions on Industrial Electronics*1991,**38**(2):108-114. 10.1109/41.88903MathSciNetCrossRefGoogle Scholar - 22.Goldberg JM, Sandler MB:
**Pseudo-natural pulse width modulation for high accuracy digital-to-analogue conversion.***Electronics Letters*1991,**27**(16):1491-1492. 10.1049/el:19910933CrossRefGoogle Scholar - 23.Liu Y-H, Teng J-H, Hsieh C-H:
**Design and implementation of a fully-digital, high-efficiency class-D amplifier system.***Proceedings of the IEEE Region 10th Annual International Conference (TENCON '07), 2007, Taipei, Taiwan*1-4.Google Scholar - 24.Yoneya A:
**Pulse width and position modulation for fully digital audio amplifier.***Proceedings of the IEEE International Symposium on Circuits and Systems (ISCAS '08), 2008, Seattle, Wash, USA*1692-1695.Google Scholar - 25.Saponara S, Nuzzo P, Nani C, van der Plas G, Fanucci L:
**Architectural exploration and design of time-interleaved SAR arrays for low-power and high speed A/D converters.***IEICE Transactions on Electronics*2009,**E-92C:**843-851.CrossRefGoogle Scholar - 26.Infineon Technologies :
**Data sheet BSO200N03S, Optimos 2 Power-Transistor.**rev 1.6, 2008Google Scholar - 27.Cerezo J:
**Class D audio amplifier performance relationship to MOSFET parameters.**International Rectifier AN 1070, 2005Google Scholar - 28.Philips :
**Data sheet UDA1320ATS.**January 2000Google Scholar - 29.Turek D:
*Design of efficient digital interpolation filters for integer upsampling, M.S. thesis*. MIT, Boston, Mass, USA; 2004.Google Scholar - 30.Benameur N, Loulou M:
**Design of efficient digital interpolation filters and sigma-delta modulator for audio DAC.***Proceedings of the IEEE 4th International Conference on Design & Technology of Integrated Systems in Nanoscal Era, (DTIS '09), 2008*1-7.Google Scholar - 31.Jacobsohn P, Palmer D:
**Audio sample rate conversion in FPGAs.***Xcell Journal*2007, 50-54.Google Scholar - 32.Huang X, Han Y, Chen L:
**The design and FPGA verification of a general structure, area-optimized interpolation filter used in sigma-delta DAC.***Proceedings of the IEEE International Conference on Solid-State and Integrated-Circuit Technology (ICSICT '06), October 2006, Shanghai, China*2111-2113.Google Scholar - 33.Becker R, Groeneweg WH:
**An audio amplifier providing up to 1 Watt in standard digital 90-nm CMOS.***IEEE Journal of Solid-State Circuits*2006,**41**(7):1648-1653. 10.1109/JSSC.2006.873674CrossRefGoogle Scholar - 34.Ryoo J-Y, Cho G-H:
**A single chip l W CMOS audio power amplifier with pseudo buffer analog and class D switching mixed mode for mobile application.***IEICE Transactions on Electronics*2005,**E-88C**(9):1886-1892.CrossRefGoogle Scholar

## Copyright information

This article is published under license to BioMed Central Ltd. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.