Skip to main content
Log in

Emergence of a square chaotic attractor through the collision of heteroclinic orbits

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

In this work we introduce a square chaotic attractor based on the collision of two heteroclinic orbits. Before the collision, the system presents the coexistence of two double scroll attractors that are generated via piecewise linear (PWL) systems that deal with two saddle-foci equilibria of different classes, i.e. the dimensions of the unstable and stable manifolds of one of the equilibrium points are one and two, respectively, and vice versa for the unstable and stable manifolds associated with the second equilibrium point. The new class is constructed based on the existence of a heteroclinic loop by linear affine systems with two saddle-focus equilibrium points of different types. The chaotic behavior of the proposed system is tested by the maximum Lyapunov exponent and the 0–1 chaos test. This new class of PWL dynamical systems exhibits different behaviors and allows the generation of different basins of attraction for the coexistence of two or more attractors. Therefore, a mechanism to establish bistability is provided and how it can be controlled (i.e. bistability annihilation) via varying system’s parameters is demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Jiménez-López, J.S. González Salas, L.J. Ontañón-García, E. Campos-Cantón, A.N. Pisarchik, J. Franklin Inst. 350, 2853 (2013)

    Article  MathSciNet  Google Scholar 

  2. C.R. Hens, R. Banerjee, U. Feudel, S.K. Dana, Phys. Rev. E 85, 035202 (2012)

    Article  ADS  Google Scholar 

  3. J. Kengne, Nonlinear Dyn. 87, 363 (2017)

    Article  Google Scholar 

  4. J. Kengne, Z. Njitacke Tabekoueng, H.B. Fotsin, Commun. Nonlinear Sci. Numer. Simul. 36, 29 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  5. H.E. Gilardi-Velázquez, L.J. Ontañón García, D.G. Hurtado-Rodriguiez, E. Campos-Cantón, J. Int. Bifurc. Chaos 27, 1730031 (2017)

    Article  Google Scholar 

  6. R. Jaimes-Reátegui, D. López-Mancilla, J.L. Echenausía-Monroy, J.H. García-López, G. Huerta-Cuellar, Complexity 2018, 9 (2018)

    Google Scholar 

  7. A. Anzo-Hernández, H.E. Gilardi-Velázquez, E. Campos-Cantón, Chaos 28, 033613 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  8. L. Zhou, C. Wang, X. Zhang, W. Yao, Int. J. Bifurc. Chaos 28, 1850050 (2018)

    Article  Google Scholar 

  9. O.E. Rössler, Phys. Lett. A 57, 397 (1976)

    Article  ADS  Google Scholar 

  10. T. Matsumoto, IEEE Trans. Circuits Syst. 31, 1055 (2008)

    Article  Google Scholar 

  11. J.A.K. Suykens, A. Huang, L.O. Chua, Archiv fur Elektronik und Ubertragungstechnik 51, 131 (1997)

    Google Scholar 

  12. K.S. Wallace Tang, G. Chen, G.Q. Zhong, K.F. Man, IEEE Trans. Circuits Syst. I: Fundam. Theory Appl. 48, 1369 (2001)

    Article  Google Scholar 

  13. E. Campos-Cantón, J.G. Barajas-Ramirez, G. Solís-Perales, R. Femat, Chaos 20, 013116 (2010)

    Article  ADS  Google Scholar 

  14. B. Aguirre-Hernández, E. Campos-Cantón, J.A. López-Renteria, E.C. Díaz González, Chaos Solitons Fractals 71, 100 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  15. E. Campos-Cantón, Int. J. Mod. Phys. C 27, 1650008 (2016)

    Article  ADS  Google Scholar 

  16. M.E. Yalçin, J.A.K. Suykens, J. Vandewalle, Int. J. Bifurc. Chaos 12, 23 (2002)

    Article  Google Scholar 

  17. E. Campos-Cantón, R. Femat, G. Chen, Chaos 22, 1 (2012)

    Article  Google Scholar 

  18. E. Campos-Cantón, I. Campos-Cantón, J.S. González Salas, F. Cruz Ordaz, Rev. Mex. Fís. 54 411 (2008)

    Google Scholar 

  19. R.J. Escalante-González, E. Campos-Cantón, Int. J. Mod. Phys. C 28, 1750008 (2017)

    Article  ADS  Google Scholar 

  20. R.J. Escalante-González, E. Campos-Cantón, M. Nicol, Chaos 27, 053109 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  21. R.J. Escalante-González, E. Campos-Cantón, IFAC-PapersOnLine 51, 526 (2018)

    Article  Google Scholar 

  22. S. Jafari, V.T. Pham, T. Kapitaniak, Int. J. Bifurc. Chaos 26, 1650031 (2016)

    Article  Google Scholar 

  23. R.J. Escalante-González, E. Campos-Cantón, IEEE Trans. Circuits Syst. II: Express Briefs 66, 1456 (2019)

    Article  Google Scholar 

  24. Q. Deng, C. Wang, Chaos 29, 093112 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  25. L. Zhou, C. Wang, L. Zhou, Int. J. Circuit Theory Appl. 46, 84 (2018)

    Article  Google Scholar 

  26. R. Devaney, A first course in chaotic dynamical systems theory and experiment (Perseus Books Publishing, L.L.C., New York, 1992)

  27. G. Li, X. Chen, Commun. Nonlinear Sci. Numer. Simul. 14, 194 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  28. L. Wang, X.S. Yang, Nonlinear Anal.: Hybrid Syst. 23, 44 (2017)

    MathSciNet  Google Scholar 

  29. T. Wu, L. Wang, X.S. Yang, Nonlinear Dyn. 84, 817 (2016)

    Article  Google Scholar 

  30. R.J. Escalante-González, H.E. Gilardi-Velázquez, E. Campos-Cantón, IFAC-PapersOnLine 51, 156 (2018)

    Article  Google Scholar 

  31. I. Andonovic, D. Uttamchandani, Principles of modern optical systems (Artech House Publishers, 1989)

  32. G.P. Agrawal, in Nonlinear Science at the Dawn of the 21st Century, edited by P.L. Christiansen, M.P. Sørensen, A.C. Scott (Springer, Berlin, Heidelberg, 2000), pp. 195–211.

  33. T. Baer, J. Opt. Soc. Am. B 3, 1175 (1986)

    Article  ADS  Google Scholar 

  34. W.L. Chen, S.B. Wang, S.S. Twu, C.R. Chung, C. Pan, Int. J. Multiphase Flow 27, 171 (2001)

    Article  Google Scholar 

  35. A.R. Yehia, D. Jeandupeux, F. Alonso, M.R. Guevara, Chaos 9, 916 (1999)

    Article  ADS  Google Scholar 

  36. R. Sevilla-Escoboza, A.N. Pisarchik, R. Jaimes-Retegui, G. Huerta-Cuellar, Proc. R. Soc. A 471, 20150005 (2015)

    Article  ADS  Google Scholar 

  37. G.A. Gottwald, I. Melbourne, Proc. R. Soc. London A 460, 603 (2004)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Campos.

Additional information

Publisher's Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gilardi-Velázquez, H.E., Escalante-González, R.J. & Campos, E. Emergence of a square chaotic attractor through the collision of heteroclinic orbits. Eur. Phys. J. Spec. Top. 229, 1351–1360 (2020). https://doi.org/10.1140/epjst/e2020-900219-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2020-900219-4

Navigation