Skip to main content
Log in

Unsteady Casson fluid flow in a porous medium with inclined magnetic field in presence of nanoparticles

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

A theoretical study on the flow of Casson nanofluid past a linear stretching sheet in a non-Darcian porous medium under the influence of inclined magnetic field is performed. Heat transfer characteristics along with Joule and viscous dissipation are analysed by considering the effect of non-uniform heat source/sink. The governing partial differential equations are non-dimensionalized and put into similar form by using a set of transformations. The highly non-linear coupled partial differential equations are solved using bivariate spectral quasi linearization method. The modification in flow, temperature and concentration profiles due to variations of parameters, namely, space- and temperature-dependent heat source/sink, Casson fluid parameter, Brownian motion, thermophoresis, Eckert number, Lewis number and the magnetic parameter are discussed by plotting the numerical result in tabular and graphical forms. Inclination angle parameter thins momentum boundary layer whereas it thickens thermal boundary layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Buongiorno, J. Heat Transfer 128, 3 (2006)

    Article  Google Scholar 

  2. C. Kleinstreuer, J. Li, J. Koo, Int. J. Heat Mass Transfer 51, 23 (2008)

    Google Scholar 

  3. S. Pramanik, Ain Shams Eng. J. 5, 1 (2014)

    Article  Google Scholar 

  4. M. Mustafa, T. Hayat, I. Pop, A. Aziz, Heat Transfer Asian Res. 40, 6 (2011)

    Article  Google Scholar 

  5. T. Hayat, S.A. Shehzad, A. Alsaedi, Appl. Math. Mech. (English Ed.) 33, 10 (2012)

    Google Scholar 

  6. O.D. Makinde, V. Nagendramma, C.S.K. Raju, A. Leelarathnam, Defect Diffus. Forum 378, 28 (2017)

    Article  Google Scholar 

  7. S.T. Mohyud-din, U. Khan, N. Ahmed, M.M. Rashidi, Multidiscip. Model. Mater. Struct. 13, 1 (2017)

    Google Scholar 

  8. W. Ibrahim, O.D. Makinde, J. Aerosp. Eng. 29, 2 (2015)

    Google Scholar 

  9. T. Hayat, M. Bilal Ashraf, S.A. Shehzad, A. Alsaedi, J. Appl. Fluid Mech. 8, 4 (2015)

    Google Scholar 

  10. M.I. Anwar, N. Tanveer, M.Z. Salleh, S. Shafie, J. Phys.: Conf. Ser. 890, 1 (2017)

    Google Scholar 

  11. I.S. Oyelakin, S. Mondal, P. Sibanda, Alexandria Eng. J. 55, 2 (2016)

    Article  Google Scholar 

  12. J. Qing, M.M. Bhatti, M.A. Abbas, M.M. Rashidi, M.E.S. Ali, Entropy 18, 4 (2016)

    Article  Google Scholar 

  13. M. Naseer, M.Y. Malik, S. Nadeem, A. Rehman, Alexandria Eng. J. 53, 3 (2014)

    Article  Google Scholar 

  14. T. Abbas, M.M. Bhatti, M. Ayub, Proc. Inst. Mech. Eng. Part E 232, 5 (2018)

    Article  Google Scholar 

  15. S.S. Ghadikolaei, K. Hosseinzadeh, D.D. Ganji, B. Jafari, Case Stud. Therm. Eng. 12, 176 (2018)

    Article  Google Scholar 

  16. K.U. Rehman, M.Y. Malik, M. Zahri, M. Tahir, Results Phys. 8, 744 (2018)

    Article  ADS  Google Scholar 

  17. M. Usman, F.A. Soomro, R. Haq, W. Wang, O. Defterli, Int. J. Heat Mass Transfer 122, 1255 (2018)

    Article  Google Scholar 

  18. K.G. Kumar, B.J. Gireesha, M.R. Krishnamurthy, B.C. Prasannakumara, J. Nanofluids 7, 108 (2018)

    Article  Google Scholar 

  19. Z. Shah, S. Islam, H. Ayaz, S. Khan, J. Heat Transfer 141, 022401 (2019)

    Article  Google Scholar 

  20. D.V. Babu, Int. J. Eng. Sci. Math. 8, 62 (2019)

    Google Scholar 

  21. S.A. Hussain, G. Ali, S. Muhammad, S. Inayat A. Shah, M. Ishaq, H. Khan, J. Nanofluids 8, 714 (2019)

    Article  Google Scholar 

  22. M. Trivedi, O. Otegbeye, M.S. Ansari, S.S. Motsa, J. Appl. Comput. Mech. 5, 849 (2019)

    Google Scholar 

  23. N.S. Shashikumar, B.C. Prasannakumara, M. Archana, B.J. Gireesha, J. Nanofluids 8, 63 (2019)

    Article  Google Scholar 

  24. B. Souayeh, M.G. Reddy, P. Sreenivasulu, T. Poornima, M.R. Gorji, I.M. Alarifi, J. Mol. Liq. 284, 163 (2019)

    Article  Google Scholar 

  25. M. Mustafa, J.A. Khan, AIP Adv. 5, 7 (2015)

    Google Scholar 

  26. A.V Kuznetsov, D.A. Nield, Int. J. Therm. Sci. 77, 2 (2014)

    Article  Google Scholar 

  27. M.M. Rahman, I.A. Eltayeb, Meccanica 48, 3 (2013)

    Article  Google Scholar 

  28. D. Gopal, N. Krishan, C.S.K. Raju, Inf. Med. Unlocked 9, 154 (2017)

    Article  Google Scholar 

  29. T. Hayat, M. Mumtaz, A. Shafiq, A. Alsaedi, J. Braz. Soc. Mech. Sci. Eng. 39, 5 (2017)

    Google Scholar 

  30. E.M. Abo-Eldahab, M.A. El-Aziz, Int. J. Therm. Sci. 43, 7 (2004)

    Article  Google Scholar 

  31. S.S. Motsa, V.M. Magagula, P. Sibanda, Sci. World J. 2014, 581987 (2014)

    Article  Google Scholar 

  32. S.S. Motsa, J. Appl. Math. 2013, 423628 (2013)

    Google Scholar 

  33. C. Canuto, M. Hussaini, A. Quarteroni, T. Zang,Spectral Methods in Fluid Dynamics (Springer-Verlag, Berlin, 1988)

  34. Trefethen,Spectral Methods in MATLAB (Society for Industrial and Applied Mathematics, 2000)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md. Sharifuddin Ansari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trivedi, M., Ansari, M.S. Unsteady Casson fluid flow in a porous medium with inclined magnetic field in presence of nanoparticles. Eur. Phys. J. Spec. Top. 228, 2553–2569 (2019). https://doi.org/10.1140/epjst/e2019-900075-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2019-900075-7

Navigation