Skip to main content
Log in

Modeling of Au(NPs)-blood flow through a catheterized multiple stenosed artery under radial magnetic field

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

This paper introduces a theoretical study of Au(NPs)-blood flow through a catheterized artery with multiple stenosis under radial magnetic field effect. Blood is modeled as Newtonian fluid. Based on mild stenosis assumptions, the governing equations of gold nanoparticles blood flow model are simplified and solved analytically. Exact solution for axial velocity is obtained by using Cauchy Euler method. Solutions for temperature, wall shear stress, resistance impedance are introduced and plotted through graphs for pertinent flow and geometric parameters. The results show that Au(NPs) can enhance blood flow through stenosed artery while applying strong radial magnetic field can discourage blood flow through it.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Tiwari, R. Kumar, Pharmatutor 2, 9 (2014)

    Google Scholar 

  2. J. Zwolińska, M. Ga̧sior, E. Śnieżek, A. Kwolek, Reumatologia 54, 201 (2016)

    Article  Google Scholar 

  3. M.E. Valentinuzzi, BioMed. Eng. OnLine 7, 1 (2008)

    Article  Google Scholar 

  4. M.S. Markov, Electromagn. Biol. Med. 26, 1 (2007)

    Article  Google Scholar 

  5. E. Ramya, M. Muthtamilselvan, D.H. Doh, Appl. Math. Comput. 324, 69 (2018)

    MathSciNet  Google Scholar 

  6. L.E. Anderson, Biological effects of magnetic fields: laboratory studies, inProceedings of the 20th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Vol. 20 of Biomedical Engineering Towards the Year 2000 and Beyond (Cat. No.98CH36286) (1998), Vol. 2796, pp. 2791–2797

  7. S. Majee, G.C. Shit, J. Magn. Magn. Mat. 424, 137 (2017)

    Article  ADS  Google Scholar 

  8. K.S. Mekheimer, M.A.E. Kot, Appl. Math. Mech. 29, 1093 (2008)

    Article  Google Scholar 

  9. S. Sharma, U. Singh, V.K. Katiyar, J. Magn. Magn. Mater. 377, 395 (2015)

    Article  ADS  Google Scholar 

  10. S. Nadeem, S. Ijaz, M.A. Sadiq, Curr. Nanosci. 10, 753 (2014)

    Article  ADS  Google Scholar 

  11. J. Misra, G.C. Shit, H.J. Rath, Comput. Fluids 37, 1 (2010)

    Article  Google Scholar 

  12. R. Bali, U. Awasthi, Appl. Math. Comput. 188, 1635 (2007)

    MathSciNet  Google Scholar 

  13. D.S. Sankar, U. Lee, J. Mech. Sci. Technol. 25, 2573 (2011)

    Article  Google Scholar 

  14. A. Alshare, B. Tashtoush, Comput. Math. Methods Med. 2016, 8123930 (2016)

    Article  Google Scholar 

  15. E. Meng, T. Hoang, Ther. Deliv. 3, 1457 (2012)

    Article  Google Scholar 

  16. S. Das, IOSR J. Appl. Phys. 7, 34 (2015)

    Google Scholar 

  17. S.U.S. Choi, Enhancing thermal conductivity of fluids with nanoparticles, inDevelopments and applications of non-Newtonian flows, edited by D.A. Siginer and H.P. Wang (American Society of Mechanical Engineers, San Francisco, California, 1995), pp. 99–105

  18. M. Muthtamilselvan, E. Ramya, D.H. Doh, G.R. Cho, J. Mech. 2018, 1 (2018)

    Google Scholar 

  19. M. Muthtamilselvan, A. Renuka, Multidiscipl. Model. Mater. Struct. 14, 1115 (2018)

    Article  Google Scholar 

  20. M. Muthtamilselvan, D. Prakash, D.-H. Doh, J. Mech. Sci. Technol. 28, 3709 (2014)

    Article  Google Scholar 

  21. A.C. Anselmo, S. Mitragotri, Bioeng. Transl. Med. 1, 10 (2016)

    Article  Google Scholar 

  22. T. Elnaqeeb, K.S. Mekheimer, F. Alghamdi, Math. Biosci. 282, 135 (2016)

    Article  MathSciNet  Google Scholar 

  23. A. Ahmed, N. Sohail, J. Mol. Liq. 216, 615 (2016)

    Article  Google Scholar 

  24. S. Nadeem, S. Ijaz, IEEE Trans. NanoBiosci. 14, 668 (2015)

    Article  Google Scholar 

  25. S. Nadeem, S. Ijaz, AIP Adv. 5, 107217 (2015)

    Article  ADS  Google Scholar 

  26. S. Noreen, M.M. Rashidi, M. Qasim, Appl. Nanosci. 7, 193 (2017)

    Article  ADS  Google Scholar 

  27. T. Elnaqeeb, N.A. Shah, K.S. Mekheimer, BioNanoScience 9, 245 (2019)

    Article  Google Scholar 

  28. K.S. Mekheimer, M.S. Mohamed, T. Elnaqeeb, Int. J. Pure Appl. Math 107, 201 (2016)

    Article  Google Scholar 

  29. K.S. Mekheimer, T. Elnaqeeb, M.A.E. Kot, F. Alghamdi, Phys. Essays 29, 272 (2016)

    Article  ADS  Google Scholar 

  30. N.S. Akbar, Int. J. Biomath. 9, 1650002 (2016)

    Article  MathSciNet  Google Scholar 

  31. J.V. Ramana Reddy, D. Srikanth, S.K. Das, Eur. Phys. J. Plus 132, 365 (2017)

    Article  Google Scholar 

  32. N.S. Akbar, W.B. Adil, Eur. Phys. J. Plus 129, 1 (2014)

    Article  Google Scholar 

  33. R. Ellahi, S.U. Rahman, S. Nadeem, N.S. Akbar, Appl. Nanosci. 4, 919 (2014)

    Article  ADS  Google Scholar 

  34. S. Nadeem, S. Ijaz, Phys. Lett. A 379, 542 (2015)

    Article  Google Scholar 

  35. S. Nadeem, S. Ijaz, IEEE Trans. NanoBiosci. 14, 417 (2015)

    Article  Google Scholar 

  36. S. Iqra, S. Nadeem, Commun. Theor. Phys. 67, 704 (2017)

    Article  Google Scholar 

  37. S.U. Rahman, R. Ellahi, S. Nadeem, Q.M.Z. Zia, J. Mol. Liq. 218, 484 (2016)

    Article  Google Scholar 

  38. M. Nawaz, T. Zubair, Results Phys. 7, 4111 (2017)

    Article  ADS  Google Scholar 

  39. I. Capek, Adv. Colloid Interface Sci. 249, 386 (2017)

    Article  Google Scholar 

  40. R. Arvizo, R. Bhattacharya, P. Mukherjee, Expert Opin. Drug Deliv. 7, 753 (2010)

    Article  Google Scholar 

  41. W. Cai, T. Gao, H. Hong, J. Sun, Nanotechnol. Sci. Appl. 1, 17 (2008)

    Article  Google Scholar 

  42. G. Mazaher, M. Mohammadmahdi, G. Maryam, Z. Amir, O. Vahid Fallah, M.U. Aleksandra, S. Alexander, Curr. Pharm. Des. 23, 2918 (2017)

    Google Scholar 

  43. M. Varna, H.V. Xuan, E. Fort, Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2017, e1470 (2017)

    Google Scholar 

  44. A.F. Versiani, L.M. Andrade, E.M. Martins, S. Scalzo, J.M. Geraldo, C.R. Chaves, D.C. Ferreira, M. Ladeira, S. Guatimosim, L.O. Ladeira, F.G. da Fonseca, Future Virol. 11, 293 (2016)

    Article  Google Scholar 

  45. L.A. Dykman, N.G. Khlebtsov, Acta Naturae 3, 34 (2011)

    Article  Google Scholar 

  46. A.N. Kharlamov, A.E. Tyurnina, V.S. Veselova, O.P. Kovtun, V.Y. Shur, J.L. Gabinsky, Nanoscale 7, 8003 (2015)

    Article  ADS  Google Scholar 

  47. X.-Q. Wang, A.S. Mujumdar, Braz. J. Chem. Eng. 25, 613 (2008)

    Article  Google Scholar 

  48. S. Nadeema, R.U. Haqa, Z.H. Khan, Alexandria Eng. J. 53, 219 (2014)

    Article  Google Scholar 

  49. R. Ponalagusamy, S. Priyadharshini, Comput. Appl. Math. 37, 719 (2018)

    Article  MathSciNet  Google Scholar 

  50. A. Ahmed, S. Nadeem, J. Cent. South Univ. 24, 2725 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thanaa Elnaqeeb.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elnaqeeb, T. Modeling of Au(NPs)-blood flow through a catheterized multiple stenosed artery under radial magnetic field. Eur. Phys. J. Spec. Top. 228, 2695–2712 (2019). https://doi.org/10.1140/epjst/e2019-900059-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2019-900059-9

Navigation