Skip to main content
Log in

Transitions without connections: quantum states, from Bohr and Heisenberg to quantum information theory

  • Review
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

In his recent paper, L. Freidel noted that instead of representing the motion of electrons in terms of oscillators and predicting their future states on the basis on this representation, as in the previous, classical, electron theory of H. Lorentz, quantum theory was, beginning nearly with its inception, concerned with the probabilities of transitions between states of electrons, without necessarily representing how these transitions come about. Taking N. Bohr’s and then W. Heisenberg’s thinking along these lines in, respectively, Bohr’s 1913 atomic theory and Heisenberg’s quantum mechanics of 1925 as a point of departure, this article reconsiders, from a nonrealist perspective (which suspends or even precludes this representation of the mechanism behind these transitions), the concept of quantum state, as a physical concept, in contradistinction to the mathematical concept of quantum state, a vector in the Hilbert-space formalism of quantum mechanics. Transitions between quantum states appear, from this perspective, as “transitions without connections,” because, while one can register the change from one quantum phenomena to another, observed in measuring instruments, we have no means of representing or possibly even conceiving of how this change comes about. The article will also discuss quantum field theory and, in closing, briefly quantum information theory as confirming, and giving additional dimensions to, these concepts of quantum state and transitions between them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.E. Allahverdyan, R. Balian, T.M. Nieuwenhuizen, Ann. Phys. 376, 324 (2016)

    Article  ADS  Google Scholar 

  2. S. Aronson, Quantum computing since Democritus (Cambridge University Press, Cambridge, UK, 2013)

  3. J.B. Barbour, The end of time: the next revolution in physics (Oxford University Press, Oxford, UK, 1999)

  4. J.S. Bell, Speakable and unspeakable in quantum mechanics (Cambridge University Press, Cambridge, UK, 2004)

  5. N. Bohr, Philos. Mag. 26, 1 (1913)

    Article  ADS  Google Scholar 

  6. N. Bohr, Phys. Rev. 48, 696 (1935)

    Article  ADS  Google Scholar 

  7. N. Bohr, The causality problem in atomic physics, in The philosophical writings of Niels Bohr, Volume 4: Causality and complementarity, supplementary papers, edited by J. Faye, H.J. Folse (Ox Bow Press, Woodbridge, CT, 1987, 1938), pp. 94–121

  8. N. Bohr, The philosophical writings of Niels Bohr, 3 Vols. (Ox Bow Press, Woodbridge, CT, 1987)

  9. M. Born, W. Heisenberg, P. Jordan, On quantum mechanics, in Sources of quantummechanics, edited by B.L. van der Waerden (Dover, New York, 1968), pp. 321–385 (originally published, 1926)

  10. M. Born, P. Jordan, Z. Phys. 34, 858 (1925)

    Article  ADS  Google Scholar 

  11. C. Branciard, M. Araújo, F. Costa, A. Feix, Č. Brukner, New J. Phys. 18, 013008 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  12. N. Brunner, O. Gühne, M. Huber, J. Phys. A 42, 424024 (2014)

    Google Scholar 

  13. P. Bush, Effect, in Compendium of quantum physics (Springer, Berlin, 2009), pp. 179–180

  14. K. Camilleri, Heisenberg and the interpretation of quantum mechanics: the physicist as philosopher (Cambridge University Press, Cambridge, 2011)

  15. J.T. Cushing, E. McMullin, Philosophical consequences of quantum theory: reflections on Bell’s theorem (Notre Dame University Press, Notre Dame, IN, 1989)

  16. G.M. D’Ariano, G. Chiribella, P. Perinotti, Quantum theory from first principles: an informational approach (Cambridge University Press, Cambridge, 2017)

  17. B. De Finetti, Philosophical lectures on probability, translated by H. Hosny (Springer, Berlin, 2008)

  18. P.A.M. Dirac, Proc. R. Soc. Lond. A, 177, 610 (1928)

    Article  ADS  Google Scholar 

  19. A. Einstein, J. Franklin Inst. 221, 349 (1936)

    Article  ADS  Google Scholar 

  20. A. Einstein, B. Podolsky, N. Rosen, Can quantum-mechanical description of physical reality be considered complete? in Quantum theory and measurement, edited by J.A. Wheeler, W.H. Zurek (Princeton University Press, Princeton, NJ, 1983), pp. 138–141 (originally published, 1935)

  21. J. Ellis, D. Amati, Quantum reflections (Cambridge University Press, Cambridge, UK, 2000)

  22. R. Feynman, QED: the strange theory of light and matter (Princeton University Press, Princeton, NJ, 1985)

  23. H. Folse, Phys. Scr. 163, 014001 (2014)

    Article  Google Scholar 

  24. L. Freidel, On the discovery of quantum mechanics by Heisenberg, Born, and Jordan (unpublished, 2016)

  25. C.A. Fuchs, N.D. Mermin, R. Schack, Am. J. Phys. 82, 749 (2014)

    Article  ADS  Google Scholar 

  26. L. Hardy, A formalism-local framework for general probabilistic theories, including quantum theory. https://doi.org/arXiv.1005.5164 [quant-ph] (2010)

  27. A. Háyek, Interpretation of probability, in Stanford Encyclopedia of Philosophy (Winter 2014 edition), edited by E.N. Zalta 2014. Available at https://doi.org/plato.stanford.edu/archives/win2012/entries/probability-interpret/

  28. W. Heisenberg, Quantum-theoretical re-interpretation of kinematical and mechanical relations, in Sources of quantum mechanics, edited by B.L. van der Waerden (Dover, New York, 1968), pp. 261–277 (originally published, 1925)

  29. W. Heisenberg, The physical principles of the quantum theory, translated by K. Eckhart, F.C. Hoyt (Dover, New York, 1949, 1930)

  30. W. Heisenberg, The development of the interpretation of the quantum theory, in Niels Bohr and the development of physics: essays dedicated to Niels Bohr on the occasion of his seventieth birthday, edited by W. Pauli (Pergamon Press, New York, 1955), pp. 12–29

  31. W. Heisenberg, Physics and philosophy: the revolution in modern science (Harper & Row, New York, 1962)

  32. W. Heisenberg, Encounters with Einstein, and other essays on people, places, and particles (Princeton University Press, Princeton, NJ, 1989)

  33. Wikipedia, Interpretations of quantum mechanics. Available at https://doi.org/en.wikipedia.org/wiki/Interpretations of quantum mechanics (accessed 1 July 2018)

  34. G. Jaeger, Quantum objects: non-local correlations, causality and objective indefiniteness in the quantum world (Springer, New York, 2013)

  35. G. Jaeger, Representing the quantum physical universe. Presented at the conference, Toward Ultimate Quantum Theory, Linnaeus University, Växjö, Sweden (2018)

  36. E.T. Jaynes, Probability theory: the logic of science (Cambridge University Press, Cambridge, UK, 2003)

  37. I. Kant, Critique of pure reason, translated by P. Guyer and A.W. Wood (Cambridge University Press, Cambridge, UK, 1997)

  38. A. Khrennikov, Interpretations of probability (de Gruyter, Berlin, 2009)

  39. A. Khrennikov, Prog. Theor. Phys. 128, 31 (2012)

    Article  ADS  Google Scholar 

  40. H. Kragh, Niels Bohr and the quantum atom: the Bohr model of atomic structure 1913–1925 (Oxford University Press, Oxford, UK, 2012)

  41. M. Kuhlman, Quantum field theory, in The Stanford encyclopedia of philosophy (Summer 2015 edition), edited by E.N. Zalta 2015. Available at https://doi.org/plato.stanford.edu/archives/sum2015/entries/quantum-field-theory/

  42. J. Ladyman, Structural realism, in The Stanford encyclopedia of philosophy (Winter 2016 edition), edited by E.N. Zalta 2016. Available at https://doi.org/plato.stanford.edu/archives/win2016/entries/structural-realism/

  43. T.C. Lucretius, On the nature of the Universe, translated by R. Melville (Oxford University Press, Oxford, UK, 2009)

  44. G. Ludwig, Z. Phys. 181, 233 (1964)

    Article  ADS  Google Scholar 

  45. J. Mehra, H. Rechenberg, in The historical development of quantum theory (Springer, Berlin, 2001), Vol. 6

  46. N.D. Mermin, Am. J. Phys. 66, 753 (1998)

    Article  ADS  Google Scholar 

  47. A. Pais, Inward bound: of matter and forces in the physical world (Oxford University Press, Oxford, UK, 1986)

  48. M. Perarnau-Llobet, T. Nieuwenhuizen, Phys. Rev. A 95, 052129 (2017)

    Article  ADS  Google Scholar 

  49. M.E. Peskin, D.V. Schroeder, An introduction to quantum field theory (CRS Press, London, 1995)

  50. Plato, Phaedo, in The collected dialogues of Plato, edited by E. Hamilton, H. Cairns (Princeton University Press, Princeton, NJ, 2005), pp. 40–98

  51. A. Plotnitsky, Quantum atomicity and quantum information: Bohr, Heisenberg, and quantum mechanics as an information theory, in Quantum theory: reexamination of foundations 2, edited by A. Khrennikov (Växjö University Press, Växjö, Sweden, 2002)

  52. A. Plotnitsky, The principles of quantum theory, from Planck’s quanta to the Higgs Boson: the nature of quantum reality and the spirit of Copenhagen (Springer /Nature, New York, 2016)

  53. A. Plotnitsky, Found. Phys. 47, 1 (2017)

    Article  MathSciNet  Google Scholar 

  54. A. Plotnitsky, A. Khrennikov, Found. Phys. 25, 1269 (2015)

    Article  ADS  Google Scholar 

  55. C. Rovelli, Found. Phys. 28, 1031 (1998)

    Article  MathSciNet  Google Scholar 

  56. E. Schrödinger, The present situation in quantum mechanics, in Quantum theory and measurement, edited by J.A. Wheeler, W.H. Zurek (Princeton University Press, Princeton, NJ, 1983), pp. 152–167 (originally published, 1935)

  57. A.D. Stone, Einstein and the quantum: The quest of the valiant Schwabian (Princeton University Press, Princeton, NJ, USA, 2015)

  58. P. Teller, An interpretive introduction to quantum field theory (Princeton University Press, Princeton, NJ, 1995)

  59. S. Weinberg, Dreams of a final theory: the scientist’s search for the ultimate laws of nature (Vintage, New York, 1994)

  60. S. Weinberg, The quantum theory of fields, volume 1: foundations (Cambridge University Press, Cambridge, 2005)

  61. J.A. Wheeler, Information, physics, quantum: the search for links, in Complexity, entropy, and the physics of information, edited by W.H. Zurek (Addison-Wesley, Redwood City, CA, 1990)

  62. J.A. Wheeler, K. Ford, Geons, black holes, and quantum foam: a life in physics (W.W. Norton, New York, 2000)

  63. E.P. Wigner, Ann. Math. 40, 149 (1939)

    Article  ADS  MathSciNet  Google Scholar 

  64. F. Wilczek, Nature 423, 239 (2005)

    Article  ADS  Google Scholar 

  65. F. Wilczek, Lightness of being: mass, ether, and the unification of forces (Basic Books, New York, 2009)

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Plotnitsky, A. Transitions without connections: quantum states, from Bohr and Heisenberg to quantum information theory. Eur. Phys. J. Spec. Top. 227, 2085–2118 (2019). https://doi.org/10.1140/epjst/e2018-800082-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2018-800082-6

Navigation