Advertisement

Classical spin simulations with a quantum two-spin correction

  • Patrick NavezEmail author
  • Grigory A. Starkov
  • Boris V. Fine
Regular Article
  • 13 Downloads
Part of the following topical collections:
  1. Non-equilibrium Dynamics: Quantum Systems and Foundations of Quantum Mechanics

Abstract

Classical simulations of high-temperature nuclear spin dynamics in solids are known to accurately predict relaxation for spin 1/2 lattices with a large number of interacting neighbors. Once the number of interacting neighbors becomes four or smaller, classical simulations lead to noticeable discrepancies. Here we attempt to improve the performance of the classical simulations by adding a term representing two-spin quantum correlations. The method is tested for a spin-1/2 chain. It exhibits good performance at shorter times, but, at longer times, it is hampered by a singular behavior of the resulting equations of motion.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. Bloch, Phys. Rev. 70, 460 (1946) ADSCrossRefGoogle Scholar
  2. 2.
    J.H. Van Vleck, Phys. Rev. 74, 1168 (1948) ADSCrossRefGoogle Scholar
  3. 3.
    I.J. Lowe, R.E. Norberg, Phys. Rev. 107, 46 (1957) ADSCrossRefGoogle Scholar
  4. 4.
    A. Abragam, Principles of Nuclear Magnetism (Oxford University Press, 1961) Google Scholar
  5. 5.
    J.A. Tjon, Phys. Rev. 143, 259 (1966) ADSCrossRefGoogle Scholar
  6. 6.
    S. Gade, I.J. Lowe, Phys. Rev. 148, 382 (1966) ADSCrossRefGoogle Scholar
  7. 7.
    P. Borckmans, D. Walgraef, Phys. Rev. 167, 282 (1968) ADSCrossRefGoogle Scholar
  8. 8.
    S.J.K. Jensen, O. Platz, Phys. Rev. B 7, 31 (1973) ADSCrossRefGoogle Scholar
  9. 9.
    S.J.K. Jensen, E.K. Hansen, Phys. Rev. B 7, 2910 (1973) ADSCrossRefGoogle Scholar
  10. 10.
    G.W. Parker, F. Lado, Phys. Rev. B 8, 3081 (1973) ADSCrossRefGoogle Scholar
  11. 11.
    M. Engelsberg, I.J. Lowe, Phys. Rev. B 10, 822 (1974) ADSCrossRefGoogle Scholar
  12. 12.
    M. Engelsberg, N.-C. Chao, Phys. Rev. B 12, 5043 (1975) ADSCrossRefGoogle Scholar
  13. 13.
    K.W. Becker, T. Plefka, G. Sauermann, J. Phys. C 9, 4041 (1976) ADSCrossRefGoogle Scholar
  14. 14.
    S.J. Jensen, E.K. Hansen, Phys. Rev. B 13, 1903 1976 ADSCrossRefGoogle Scholar
  15. 15.
    A.A. Lundin, V.E. Zobov, J. Magn. Reson. 26, 229 (1977) ADSGoogle Scholar
  16. 16.
    R.N. Shakhmuratov, J. Phys.: Condens. Matter 3, 8683 (1991) ADSGoogle Scholar
  17. 17.
    C. Tang, J.S. Waugh, Phys. Rev. B 45, 748 (1992) ADSCrossRefGoogle Scholar
  18. 18.
    A.A. Lundin, Sov. Phys. JETP 102, 352 (1992) Google Scholar
  19. 19.
    D.K. Sodickson, J.S. Waugh, Phys. Rev. B 52, 6467 (1995) ADSCrossRefGoogle Scholar
  20. 20.
    J. Jensen, Phys. Rev. B 52, 9611 (1995) ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    B.V. Fine, Phys. Rev. Lett. 79, 4673 (1997) ADSCrossRefGoogle Scholar
  22. 22.
    B.V. Fine, Ph.D. thesis, University of Illinois at Urbana-Champaign, 2000, https://doi.org/www.physics.uiuc.edu/Research/Publications/theses/copies/fine.ps
  23. 23.
    K.A. Al-Hassanieh, V.V. Dobrovitski, E. Dagotto, B.N. Harmon, Phys. Rev. Lett. 97, 037204 (2006) ADSCrossRefGoogle Scholar
  24. 24.
    W. Zhang, N. Konstantinidis, K.A. Al-Hassanieh, V.V. Dobrovitski, J. Phys.: Condens. Matter 19, 083202 (2007) ADSGoogle Scholar
  25. 25.
    T.A. Elsayed, B.V. Fine, Phys. Rev. Lett. 110, 070404 (2013) ADSCrossRefGoogle Scholar
  26. 26.
    T.A. Elsayed, Chaos and in Classical and Quantum Spin Systems, Ph.D. thesis, University of Heidelberg, 2013 Google Scholar
  27. 27.
    T.A. Elsayed, B.V. Fine, Phys. Rev. B 91, 094424 (2015) ADSCrossRefGoogle Scholar
  28. 28.
    E.M. Purcell, H.C. Torrey, R.V. Pound, Phys. Rev. 69, 37 (1946) ADSCrossRefGoogle Scholar
  29. 29.
    F. Bloch, W.W. Hansen, M. Packard, Phys. Rev. 70, 474 (1946) ADSCrossRefGoogle Scholar
  30. 30.
    K. Fabricius, U. Löw, J. Stolze, Phys. Rev. B 55, 5833 (1997) ADSCrossRefGoogle Scholar
  31. 31.
    B.V. Fine, J. Stat. Phys. 112, 319 (2003) CrossRefGoogle Scholar
  32. 32.
    B.V. Fine, Int. J. Mod. Phys. B 18, 1119 (2004) ADSCrossRefGoogle Scholar
  33. 33.
    B.V. Fine, Phys. Rev. Lett. 94, 247601 (2005) ADSCrossRefGoogle Scholar
  34. 34.
    S.W. Morgan, B.V. Fine, B. Saam, Phys. Rev. Lett. 101, 067601 (2008) ADSCrossRefGoogle Scholar
  35. 35.
    E.G. Sorte, B.V. Fine, B. Saam, Phys. Rev. B 83, 064302 (2011) ADSCrossRefGoogle Scholar
  36. 36.
    B. Meier, J. Kohlrautz, J. Haase, Phys. Rev. Lett. 108, 177602 (2012) ADSCrossRefGoogle Scholar
  37. 37.
    R. Steinigeweg, Europhys. Lett. 97, 67001 (2012) ADSCrossRefGoogle Scholar
  38. 38.
    A.S. de Wijn, B. Hess, B.V. Fine, Phys. Rev. Lett. 109, 034101 (2012) ADSCrossRefGoogle Scholar
  39. 39.
    A.S. de Wijn, B. Hess, B.V. Fine, J. Phys. A: Math. Theor. 46, 254012 (2013) ADSCrossRefGoogle Scholar
  40. 40.
    B.V. Fine, T.A. Elsayed, C.M. Kropf, A.S. de Wijn, Phys. Rev. E 89, 012923 (2014) ADSCrossRefGoogle Scholar
  41. 41.
    T.A. Elsayed, B.V. Fine, Phys. Scr. T165, 014011 (2015) ADSCrossRefGoogle Scholar
  42. 42.
    P.N.F. Queisser, K.V. Krutitsky, R. Schützhold, Phys. Rev. A 89, 033616 (2014) ADSCrossRefGoogle Scholar
  43. 43.
    P. Navez, R. Schützhold, Phys. Rev. A 82, 063603 (2010) ADSCrossRefGoogle Scholar
  44. 44.
    F.Q.K.V. Krutitsky, P. Navez, R. Schützhold, EPJ Quantum Technol. 1, 12 (2014) CrossRefGoogle Scholar
  45. 45.
    F.Q.P. Navez, R. Schützhold, J. Phys. A: Math. Theor. 47, 225004 (2014) ADSCrossRefGoogle Scholar
  46. 46.
    P. Navez, G.T. Tsironis, A. Zagoskin, Phys. Rev. B 95, 064304 (2017) ADSCrossRefGoogle Scholar
  47. 47.
    G.A. Starkov, B.V. Fine, Phys. Rev. B 98, 214421 (2018) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Patrick Navez
    • 1
    • 2
    Email author
  • Grigory A. Starkov
    • 1
    • 3
  • Boris V. Fine
    • 1
    • 4
  1. 1.Skolkovo Institute of Science and Technology, Skolkovo Innovation CentreMoscowRussia
  2. 2.Department of Mathematics and StatisticsUniversity of SaskatchewanSaskatoonCanada
  3. 3.Lebedev Physical Institute of the Russian Academy of SciencesMoscowRussia
  4. 4.Institute for Theoretical Physics, University of HeidelbergHeidelbergGermany

Personalised recommendations