Skip to main content
Log in

A novel fractional-order chaotic system with specific topology: from proposing to FPGA implementation

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

Designing and analyzing new nonlinear dynamic systems have gotten much interest and effort among scientist recently. Between these approaches, chaotic and fractional-order systems have specific position as they can describe real phenomenon more accurate than the classical methods. In this article, a new chaotic system with specific topological properties has been introduced and also fractional version of this chaotic system has been developed. Different analytical methods like statistical, bifurcation and bicoherence analyses have been done to show properties of the proposed system. Field programmable gate arrays (FPGAs) implementation of chaotic and fractional-order system is another new topic which have been done in this article to show the feasibility of the proposed fractional-order system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Faure, H. Korn, C. R. Acad. Sci. III 324, 773 (2001)

    Article  Google Scholar 

  2. H. Korn, P. Faure, C. R. Biol. 326, 787 (2003)

    Article  Google Scholar 

  3. J.W. Freeman, IEEE Trans. Circuits Syst. 35, 781 (1988)

    Article  Google Scholar 

  4. V.-T. Pham et al., Int. J. Bifurc. Chaos 24, 1450073 (2014)

    Article  Google Scholar 

  5. S. Jafari, J.C. Sprott, S.M.R. Hashemi Golpayegani, Phys. Lett. A 377, 699 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  6. S. Jafari, V.-T. Pham, T. Kapitaniak, Int. J. Bifurc. Chaos 26, 1650031 (2016)

    Article  Google Scholar 

  7. V.-T. Pham et al., Eur. Phys. J. Special Topics 225, 127 (2016)

    Article  ADS  Google Scholar 

  8. M. Molaie et al., Int. J. Bifurc. Chaos 23, 1350188 (2013)

    Article  MathSciNet  Google Scholar 

  9. V.-T. Pham et al., Int. J. Bifurc. Chaos 27, 1750053 (2017)

    Article  Google Scholar 

  10. V.-T. Pham et al., Optik 127, 9111 (2016)

    Article  ADS  Google Scholar 

  11. T.S. Kingni et al., Circuits Syst. Signal Process. 35, 1933 (2016)

    Article  MathSciNet  Google Scholar 

  12. V.-T. Pham, S. Jafari, C. Volos, Optik 131, 343 (2017)

    Article  ADS  Google Scholar 

  13. T.V. Pham et al., Int. J. Electron. 105, 385 (2017)

    Google Scholar 

  14. T.S. Kingni et al., Chaos Solitons Fractals 99, 209 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  15. S. Jafari, J.C. Sprott, M. Molaie, Int. J. Bifurc. Chaos 26, 1650098 (2016)

    Article  Google Scholar 

  16. S. Jafari et al., Nonlinear Dyn. 86, 1349 (2016)

    Article  MathSciNet  Google Scholar 

  17. M. Field, M. Golubitsky, Symmetry in chaos: a search for pattern in mathematics, art, and nature (SIAM, Philadelphia, Pennsylvania, United States, 2009)

  18. R. Gilmore, C. Letellier, The symmetry of chaos (Oxford University Press, Oxford, England, UK, 2007)

  19. I. Stewart, M. Golubitsky, Fearful symmetry: is God a geometer? (Courier Corporation, Mineola, New York, 2010)

  20. Z. Trzaska, Matlab solutions of chaotic fractional order circuits, in Engineering education and research Using MATLAB, edited by A.H. Assi (Intech, Rijeka, 2011), Chapter 19

  21. I. Petráš, Acta Montan. Slovaca 11, 273 (2006)

    Google Scholar 

  22. A. Allagui, M.A. Abdelkareem, H. Alawadhi, A.S. Elwakil, Sci. Rep. 6, 21282 (2016)

    Article  ADS  Google Scholar 

  23. J.B. Maundy, A.S. Elwakil, A. Allagui, Comput. Electron. Agric. 119, 153 (2015)

    Article  Google Scholar 

  24. F. Meral, T. Royston, R. Magin, Commun. Nonlinear Sci. Numer. Simul. 15, 939 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  25. H. Schiessel et al., J. Phys. A: Math. Gen. 28, 6567 (1995)

    Article  ADS  Google Scholar 

  26. J.T. Freeborn, B. Maundy, A.S. Elwakil, Mater. Renew. Sustain. Energy 4, 9 (2015)

    Article  Google Scholar 

  27. K.C. Kwuimy, G. Litak, C. Nataraj, Nonlinear Dyn. 80, 491 (2015)

    Article  Google Scholar 

  28. C. Psychalinos et al., Int. J. Circuit Theory Appl. 44, 2035 (2016)

    Article  Google Scholar 

  29. C. Psychalinos, G. Tsirimokou, A.S. Elwakil, Circuits Syst. Signal Process. 35, 1377 (2016)

    Article  Google Scholar 

  30. G. Tsirimokou et al., Electron. Lett. 52, 1298 (2016)

    Article  Google Scholar 

  31. G. Tsirimokou, C. Psychalinos, A.S. Elwakil, Int. J. Circuit Theory Appl. 45, 595 (2016)

    Article  Google Scholar 

  32. M. Fouda et al., Energy 111, 785 (2016)

    Article  Google Scholar 

  33. W. Ahmad, R. El-Khazali, A. Elwakil, Electron. Lett. 37, 1110 (2001)

    Article  Google Scholar 

  34. A. Tepljakov et al., ISA Trans. 60, 262 (2016)

    Article  Google Scholar 

  35. I. Polubny, IEEE Trans. Autom. Control 44, 208 (1999)

    Article  Google Scholar 

  36. I. Podlubny, L. Dorcak, I. Kostial, On fractional derivatives, fractional-order dynamic systems and PIλ Dμ-controllers, in Proceedings of the 36th IEEE Conference on Decision and Control, 1997 (IEEE, 1997)

  37. A. Tepljakov et al., Design and implementation of fractional-order PID controllers for a fluid tank system, in American Control Conference (ACC), 2013 (IEEE, 2013)

  38. P.M. Aghababa, J. Comput. Nonlinear Dyn. 7, 021010 (2012)

    Article  Google Scholar 

  39. A.E. Boroujeni, H.R. Momeni, Signal Process. 92, 2365 (2012)

    Article  Google Scholar 

  40. R. Zhang, J. Gong, Syst. Sci. Control Eng. 2, 751 (2014)

    Article  Google Scholar 

  41. A. Tepljakov, Fractional-order calculus based identification and control of linear dynamic systems, Master thesis, Tallinn University of Technology, Tallinn, Estonia, 2011

  42. R. Li, W. Chen, Chin. Phys. B 22, 040503 (2013)

    Article  ADS  Google Scholar 

  43. D. Cafagna, G. Grassi, Chin. Phys. B 24, 080502 (2015)

    Article  Google Scholar 

  44. K. Rajagopal, A. Karthikeyan, A.K. Srinivasan, Nonlinear Dyn. 87, 2281 (2017)

    Article  Google Scholar 

  45. M.-F. Danca, W.K. Tang, G. Chen, Chaos Solitons Fractals 84, 31 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  46. E. Tlelo-Cuautle et al., Nonlinear Dyn. 85, 2143 (2016)

    Article  Google Scholar 

  47. Q. Wang et al., IEEE Trans. Circuits Syst. I: Regul. Pap. 63, 401 (2016)

    Article  MathSciNet  Google Scholar 

  48. E. Dong et al., Nonlinear Dyn. 83, 623 (2016)

    Article  Google Scholar 

  49. E. Tlelo-Cuautle et al., Nonlinear Dyn. 82, 1879 (2015)

    Article  MathSciNet  Google Scholar 

  50. V. Rashtchi, M. Nourazar, Circuits Syst. Signal Process. 34, 3101 (2015)

    Article  Google Scholar 

  51. E. Tlelo-Cuautle et al., Commun. Nonlinear Sci. Numer. Simul. 27, 66 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  52. X. Ya-Ming, W. Li-Dan, D. Shu-Kai, Acta Phys. Sin. 65, 120503 (2016)

    Google Scholar 

  53. S. He, K. Sun, H. Wang, Entropy 17, 8299 (2015)

    Article  ADS  Google Scholar 

  54. S. He, K. Sun, H. Wang, IEEE/CAA J. Autom. Sin. 1 (2016)

  55. H. Wang, K. Sun, S. He, Phys. Scr. 90, 015206 (2014)

    Article  Google Scholar 

  56. N. Kuznetsov, Phys. Lett. A 380, 2142 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  57. A.G. Leonov, N.V. Kuznetsov, Int. J. Bifurc. Chaos 17, 1079 (2007)

    Article  Google Scholar 

  58. N. Kuznetsov, T. Alexeeva, G. Leonov, arXiv:1410.2016 (2014)

  59. N. Kuznetsov, T. Mokaev, P. Vasilyev, Commun. Nonlinear Sci. Numer. Simul. 19, 1027 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  60. C. Pezeshki, S. Elgar, R. Krishna, J. Sound Vib. 137, 357 (1990)

    Article  ADS  Google Scholar 

  61. K. Diethelm, The analysis of fractional differential equations: an application-oriented exposition using differential operators of Caputo type (Springer, New York City, United States, 2010)

  62. Y. Zhou, J. Wang, L. Zhang, Basic theory of fractional differential equations (World Scientific, Singapore, 2016)

  63. D. Baleanu et al., in Fractional calculus: models and numerical methods (World Scientific, Singapore, 2016), Vol. 5

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sajad Jafari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bayani, A., Jafari, M.A., Rajagopal, K. et al. A novel fractional-order chaotic system with specific topology: from proposing to FPGA implementation. Eur. Phys. J. Spec. Top. 226, 3729–3745 (2017). https://doi.org/10.1140/epjst/e2018-00031-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2018-00031-y

Navigation