Skip to main content

Advertisement

Log in

Diagnostics of an AC driven atmospheric pressure non-thermal plasma jet and its use for radially directed jet array

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

An alternating current atmospheric pressure plasma jet is generated with noble gas or noble gas/oxygen admixture as working gas. A “core plasma filament” is observed at the center of the dielectric tube and extends to the plasma jet at higher peak-to-peak voltages. This type of plasma jet is believed to be of the same nature with the reported plasma bullet driven by pulsed DC power sources. Double current probes are used to assess the speed of the plasma bullet and show that the speed is around 104–105 m/s. The time dependence of the downstream bullet speed is attributed to the gas heating and in turn the increase of the reduced electric field E/N. Optical emission spectra show the dependence of helium and oxygen emission intensities on the concentration of oxygen additive in the carrier gas, with peak values found at 0.5% O2. Multiple radial jets are realized on dielectric tubes of different sizes. As a case study, one of these multi-jet devices is used to treat B. aureus on the inner surface of a plastic beaker and is shown to be more effective than a single jet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Fridman, A. Shereshevsky, M.M. Jost, A.D. Brooks, A. Fridman, A. Gutsol, V. Vasilets, G. Friedman, Floating electrode dielectric barrier discharge plasma in air promoting apoptotic behavior in melanoma skin cancer cell lines, Plasma Chem. Plasma Process. 27, 163 (2007)

    Article  Google Scholar 

  2. M. Lu, S.J. Park, B.T. Cunningham, J.G. Eden, Low temperature plasma channels generated in microcavity trenches with widths of 20 m and aspect ratios as large as 10 4, Appl. Phys. Lett. 92, 101928 (2008)

    Article  ADS  Google Scholar 

  3. J.F. Kolb, A.A.H. Mohamed, R.O. Price, R.J. Swanson, A.Bowman, R.L. Chiavarini, M. Stacey, K.H. Schoenbach, Cold atmospheric pressure air plasma jet for medical applications, Appl. Phys. Lett. 92, 241501 (2008)

    Article  ADS  Google Scholar 

  4. D. Dobrynin, K. Arjunan, A. Fridman, G. Friedman, A.M. Clyne, Direct and controllable nitric oxide delivery into biological media and living cells by a pin-to-hole spark discharge (PHD) plasma, J. Phys. D: Appl. Phys. 44, 075201 (2011)

    Article  ADS  Google Scholar 

  5. T. Verreycken, R.M. Van der Horst, A.H.F.M. Baede, E.M. Van Veldhuizen, P.J. Bruggeman, Time, spatially resolved LIF of OH in a plasma filament in atmospheric pressure He–H2O, J. Phys. D: Appl. Phys. 45, 045205 (2012)

    Article  ADS  Google Scholar 

  6. L.G. Meng, H.F. Liang, C.L. Liu, Z.H. Liang, A line array of microplasma devices with coplanar electrodes operating in argon, IEEE Transactions on Plasma Science 36, 2788 (2008)

    Article  ADS  Google Scholar 

  7. F. Iza, J. Hopwood, Split-ring resonator microplasma: microwave model, plasma impedance and power efficiency, Plasma Sources Sci. Technol. 14, 397 (2005)

    Article  ADS  Google Scholar 

  8. U. Kogelschatz, Dielectric-barrier discharges: their history, discharge physics, and industrial applications, Plasma Chem. Plasma Process. 23, 1 (2003)

    Article  Google Scholar 

  9. M.A. Malik, K.H. Schoenbach, A novel pulsed corona discharge reactor based on surface streamers for NO conversion from N2-O2 mixture gases, Int. J. Plasma, Environ. Sci. Technol. 5, 50 (2011)

    Google Scholar 

  10. P.H. Ceccato, O. Guaitella, M.R. Le Gloahec, A. Rousseau, Time-resolved nanosecond imaging of the propagation of a corona-like plasma discharge in water at positive applied voltage polarity, J. Phys. D: Appl. Phys. 43, 175202 (2010)

    Article  ADS  Google Scholar 

  11. T. Shao, C. Zhang, R. Wang, Y. Zhou, Q. Xie, Z. Fang, Comparison of atmospheric-pressure He and Ar plasma jets driven by microsecond pulses, IEEE Transactions on Plasma Science 43, 726 (2015)

    Article  ADS  Google Scholar 

  12. Z. Cao, J.L. Walsh, M.G. Kong, Appl. Phys. Lett. 94, 021501 (2009)

    Article  ADS  Google Scholar 

  13. J.Y. Kim, J. Ballato, S.-O. Kim, Plasma Processes Polym. 9, 253 (2012)

    Article  Google Scholar 

  14. P. Sun, J. Kim, S.-J. Park, J.G. Eden, IEEE International Conference on Plasma Science (ICOPS), June 16 2013, San Francisco, California, USA (2013)

  15. W.-C. Zhu, Q. Li, X.-M. Zhu, Y.-K. Pu, J. Phys. D: Appl. Phys. 42, 202002 (2009)

    Article  ADS  Google Scholar 

  16. N. Jiang, A. Ji, Z. Cao, J. Appl. Phys. 106, 013308 (2009)

    Article  ADS  Google Scholar 

  17. S.-Z. Li, W.-T. Huang, D. Wang, IEEE Trans. Plasma Sci. 37, 1825 (2009)

    Article  ADS  Google Scholar 

  18. Z. Cao, Q.Y. Ni, M.G. Kong, J. Phys. D: Appl. Phys. 42, 222003 (2009)

    Article  ADS  Google Scholar 

  19. V.S. Johnson, W. Zhu, R. Wang, J. Lo Re, S. Sivaram, J. Mahoney, J.L. Lopez, IEEE Trans. Plasma Sci. 39, 2360 (2011)

    Article  ADS  Google Scholar 

  20. S. Bornholdt, M. Wolter, H. Kersten, Characterization of an atmospheric pressure plasma jet for surface modification and thin film deposition, Eur. Phys. J. D 60, 653 (2010)

    Article  ADS  Google Scholar 

  21. M. Teschke, J. Kedzierski, E.G. Finantu-Dinu, D. Korzec, J. Engemann, High-speed photographs of a dielectric barrier atmospheric pressure plasma jet, IEEE Trans. Plasma Sci. 33, 310 (2005)

    Article  ADS  Google Scholar 

  22. X. Lu, M. Laroussi, V. Puech, On atmospheric-pressure non-equilibrium plasma jets and plasma bullets, Plasma Sources Sci. Technol. 21, 034005 (2012)

    Article  ADS  Google Scholar 

  23. M. Teschke, J. Kedzierski, E.G. Finantu-Dinu, D. Korzec, J. Engemann, High-speed photographs of a dielectric barrier atmospheric pressure plasma jet, IEEE Trans. Plasma Sci. 33, 310 (2005)

    Article  ADS  Google Scholar 

  24. W. Zhu, 6th International Workshop on Microplasmas, April 3, 2011, Paris, France (2011)

  25. R. Foest, A. Ohl, K.D. Weltmann, Miniaturized non-thermal atmospheric pressure plasma jet: characterization of self-organized regimes, Plasma Phys. Control. Fusion 51, 124045 (2009)

    Article  ADS  Google Scholar 

  26. W. Zhu, J.L. Lopez, A dc non-thermal atmospheric-pressure plasma microjet, Plasma Sources Sci. Technol. 21, 034018 (2012)

    Article  ADS  Google Scholar 

  27. K. Niemi, J. Waskoenig, N. Sadeghi, T. Gans, D. O’Connell, The role of helium metastable states in radio-frequency driven helium-oxygen atmospheric pressure plasma jets: measurement and numerical simulation, Plasma Sources Sci. Technol. 20, 055005 (2011)

    Article  ADS  Google Scholar 

  28. N. Knake, S. Reuter, K. Niemi, V. Schulz-Von Der Gathen, J. Winter, Absolute atomic oxygen density distributions in the effluent of a microscale atmospheric pressure plasma jet, J. Phys. D: Appl. Phys. 41, 194006 (2008)

    Article  ADS  Google Scholar 

  29. Y. Liang, Y. Li, K. Sun, Q. Zhang, W. Li, W. Zhu, J. Zhang, J. Fang, Plasma Process. Polym. 12, 1069 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Zhu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, W., Wang, R. Diagnostics of an AC driven atmospheric pressure non-thermal plasma jet and its use for radially directed jet array. Eur. Phys. J. Spec. Top. 226, 2965–2977 (2017). https://doi.org/10.1140/epjst/e2016-60353-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2016-60353-x

Navigation