Skip to main content

Advertisement

Log in

Reactive radical-driven bacterial inactivation by hydrogen-peroxide-enhanced plasma-activated-water

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

The combined effects of plasma activated water (PAW) and hydrogen peroxide (H2O2), PAW/HP, in sterilization were investigated in this study. To assess the synergistic effects of PAW/HP, S. aureus was selected as the test microorganism to determine the inactivation efficacy. Also, the DNA/RNA and proteins released by the bacterial suspensions under different conditions were examined to confirm membrane integrity. Additionally, the intracellular pH (pHi) of S. aureus was measured in our study. Electron spin resonance spectroscopy (ESR) was employed to identify the presence of radicals. Finally, the oxidation reduction potential (ORP), conductivity and pH were measured. Our results revealed that the inactivation efficacy of PAW/HP is much greater than that of PAW, while increased H2O2 concentration result in higher inactivation potential. More importantly, as compared with PAW, the much stronger intensity ESR signals and higher ORP in PAW/HP suggests that the inactivation mechanism of the synergistic effects of PAW/HP: more reactive oxygen species (ROS) and reactive nitrogen species (RNS), especially OH and NO radicals, are generated in PAW combined with H2O2 resulting in more deaths of the bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Bekeschus, J. Kolata, C. Winterbourn, A. Kramer, R. Turner, K.D. Weltmann, B. Bröker, K. Masur, Free Rad. Res. 48, 5 (2014)

    Article  Google Scholar 

  2. T. Sato, M. Yokoyama, K. Johkura, J. Phys. D: Appl. Phys. 44, 372001 (2011)

    Article  Google Scholar 

  3. J. Winter, H. Tresp, M.U. Hammer, S. Iseni, S. Kupsch, A. Schmidt-Bleker, K. Wende, M. Dünnbier, K. Masur, K-D. Weltmann, S. Reuter, J. Phys. D: Appl. Phys. 47, 285401 (2014)

    Article  Google Scholar 

  4. S.K. Kang, M.Y. Choi, I.G. Koo, P.Y. Kim, Y. Kim, G.J. Kim, A.-A.H. Mohamed, G.J. Collins, J.K. Lee, Appl. Phys. Lett. 98, 143702 (2011)

    Article  ADS  Google Scholar 

  5. H.W. Lee, G.J. Kim, J.M. Kim, J.K. Park, J.K. Lee, G.C. Kim, J. Endod 35, 587 (2009)

    Article  Google Scholar 

  6. M. Yamamoto, M. Nishioka, M. Sadakata, J. Electrostatics 56, 73 (2002)

    Google Scholar 

  7. I. Koban, M.H. Geisel, B. Holtfreter, L. Jablonowski, N.O. Hübner, R.M. KaiMasur, K.-D. Weltmann, A. Kramer, T. Kocher, ISRN Dentistry 2013, 573262 (2013)

    Article  Google Scholar 

  8. G. Kamgang-Youbi, J.-M. Herry, J.-L. Brisset, M.-N. Bellon-Fontaine, A. Doubla, M. Naïtali, Appl. Microbiol. Biotechnol. 81, 449 (2008)

    Article  Google Scholar 

  9. M. Naïtali, G. Kamgang-Youbi, J.-M. Herry, M.-N. Bellon-Fontaine, J.-L. Brisset, Appl. Environ. Microbiol. 76, 7662 (2010)

    Article  Google Scholar 

  10. G. Kamgang-Youbi, J.-M. Herry, T. Meylheuc, J.-L. Brisset, M.-N. Bellon-Fontaine, A. Doubla, M. Naïtali, Lett. Appl. Microbiol. 48, 13 (2009)

    Article  Google Scholar 

  11. M.J. Traylor, M.J. Pavlovich, S. Karim, P. Hait, Y. Sakiyama, D.S. Clark, D.B. Graves, J. Phys. D: Appl. Phys. 44, 472001 (2011)

    Article  ADS  Google Scholar 

  12. K. Oehmigen, M. Hahnel, R. Brandenburg, Ch. Wilke, K.-D. Weltmann, Th. von Woedtke, Plasma Process. Polym. 7, 250 (2010)

    Article  Google Scholar 

  13. Q. Zhang, Y. Liang, H. Feng, R. Ma, Y. T. Jue Zhang, J. Fang, Appl. Phys. lett. 102, 203701 (2013)

    Article  ADS  Google Scholar 

  14. S. Yu, Q. Chen, J. Liu, K. Wang, S. Sun, Z. Jiang, J. Zhang, J. Fang, Appl. Phys. Lett. 106, 244101 (2015)

    Article  ADS  Google Scholar 

  15. B. Eliasson, U. Kogelschatz, IEEE Trans. Plasma Sci. 19, 1063 (1991)

    Article  ADS  Google Scholar 

  16. J. Salge, Surf. Coat. Technol. 80, 1–7 (1996)

    Article  Google Scholar 

  17. M. Chen, S-L Huang, X-Q. Zhang, B. Zhang, H. Zhu, V.W. Yang, X-P. Zou, J. Cellular Biochem. 113, 2474 (2012)

    Article  Google Scholar 

  18. B. Halliwell, Plant Physiol. 141, 312 (2006)

    Article  Google Scholar 

  19. B. Halliwell, J. Gutteridge, Free Radicals in Biology and Medicine, 3rd ed. (Oxford University Press, 1999)

  20. L.L. McPherson, Water Eng. Manage. 140, 29 (1993)

    Google Scholar 

  21. C.Z. Chen, S.L. Cooper, Biomaterials 23, 3359 (2002)

    Article  Google Scholar 

  22. J.S. Reidmiller, J.D. Baldeck, G.C. Rutherford, R.E. Marquis, J. Food Prot. 66, 1233 (2003)

    Article  Google Scholar 

  23. P.B.L. Chang, T.M. Young, Water Res. 34, 2233 (2000)

    Article  Google Scholar 

  24. O. Johansson, J. Bood, M. Aldén, U. Lindblad, Appl. Phys. B. 97, 515 (2009)

    Article  ADS  Google Scholar 

  25. K.H. Cheeseman, T.F. Slater, Br. Med. Bull. 49, 481 (1993)

    Article  Google Scholar 

  26. G.V. Buxton, C.L. Greenstock, W.P. Helman, A.B. Ross, J. Phys. Chem. Ref. Data 17, 513 (1988)

    Article  ADS  Google Scholar 

  27. R.P. Haugland, Eugene (OR): Molecular Probes, 6th edn. (1996)

  28. F. Ullmann, Encyclopedia of Industrial Chemistry, 5th edn. (Verlag Chemie: Weinheim, 1989)

  29. R.E. Kirk, D.F. Othmer, Encyclopedia of chemical technology, 4th ed. (Wiley-Interscience, London, 1995)

  30. D.R. Lide, Strengths of chemical bond. 9, 51 (1999)

    Google Scholar 

  31. P. Bruggeman, D.C. Schram, Plasma Sources Sci. Technol. 19, 045025 (2010)

    Article  ADS  Google Scholar 

  32. NIST Chemical Kinetic Database, http://kinetics.nist.gov/kinetics/index.jsp

  33. H.W.k. Lee, H.W. Lee, S.K. Kang, H.Y. Kim, I.H. Won, S.M. Jeon, J.K. Lee, Plasma Sources Sci. Technol. 22, 055008 (2013)

    Article  ADS  Google Scholar 

  34. G. Merényi, J. Lind, S. Naumov, C. von Sonntag, Environ. Sci. Technol. 44, 3505 (2010)

    Article  ADS  Google Scholar 

  35. C. Espírito Santo, N. Taudte, D.H. Nies, G. Grass, Appl. Environ. Microbiol. 74, 977 (2008)

    Article  Google Scholar 

  36. A.U. Khan, M. Kasha, Proc. Natl. Acad. Sci. 91, 12365 (1994)

    Article  ADS  Google Scholar 

  37. B. Halliwell, J.M.C. Gutteridge, Biochem. J. 1, 210 (1984)

    Google Scholar 

  38. D.B. Graves, J. Phys. D: Appl. Phys. 45, 263001 (2012)

    Article  ADS  Google Scholar 

  39. X. Hao, A.M. Mattson, C.M. Edelblute, M.A. Malik, L.C. Heller, J.F. Kolb, Plasma Process. Polym. 11, 1044 (2014)

    Article  Google Scholar 

  40. C.A.J. van Gils, S. Hofmann, B.K.H.L. Boekema, R. Brandenburg, P.J. Bruggeman, J. Phys. D: Appl. Phys. 46, 175203 (2013)

    Article  ADS  Google Scholar 

  41. Y. Katsumura, The chemistry of free radicals in N-centered radicals (Wiley, Chichester, 1998), pp. 393–412

  42. Y. Maeda, N. Igura, M. Shimoda, I. Hayakawa, Int. J. Food Sci. Technol. 38, 889 (2003)

    Article  Google Scholar 

  43. C.H. Foyer, J. Harbinson, P.M. Mullineaux, in Causes of photooxidative stress and amelioration of defense systems in plants (CRC Press, Boca Raton, 1994), pp. 1–42

  44. B. Halliwell, Biochem. J. 163, 441 (1977)

    Article  Google Scholar 

  45. R. Mittlerand, B.A. Zilinskas, Plant Physiology 97, 962 (1991)

    Article  Google Scholar 

  46. G. Park, Y.H. Ryu, Y.J. Hong, E.H. Choi, H.S. Uhm, Appl. Phys. Lett. 100, 063703 (2012)

    Article  ADS  Google Scholar 

  47. S.J. Kim, T.H. Chung, S.H. Bae, S.H. Leem, Appl. Phys. Lett. 94, 141502 (2009)

    Article  ADS  Google Scholar 

  48. B.H.J. Bielski, D.E. Cabelli, R.L. Arudi, J. Phys. Chem. Ref. Data 14, 1041 (1985)

    Article  ADS  Google Scholar 

  49. Q. Zhang, J. Zhuang, T. von Woedtke, J.F. Kolb, J. Zhang, J. Fang, K-D. Weltmann, Appl. Phys. Lett. 105, 104103 (2014)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jue Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, S., Zhang, Q., Ma, R. et al. Reactive radical-driven bacterial inactivation by hydrogen-peroxide-enhanced plasma-activated-water. Eur. Phys. J. Spec. Top. 226, 2887–2899 (2017). https://doi.org/10.1140/epjst/e2016-60330-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2016-60330-y

Navigation