Skip to main content
Log in

Inactivation of Shewanella putrefaciens by Plasma Activated Water

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

Plasma activated water (PAW) generated by atmospheric-pressure air microplasma arrays is a solution containing a variety of reactive species. Here we investigate the effects of different applied voltage and water-activated time on bactericidal activities against Shewanella putrefaciens (S. putrefaciens). Our measurements showed that the sterilization efficiency of S. putrefaciens by PAW could be up to 2.0 Log Reduction. Scanning electron microscopy image and DNA concentration measurement showed that the S. putrefaciens cells were damaged and deformed due to the PAW treatment. The physicochemical properties of PAW treated by different applied voltage and water-activated time were evaluated, including pH value, initial PAW temperature, and the concentrations of plasma-activated species, such as H2O2, NO 3 , NO 2 , and O3. Analysis indicates that the sterilization efficiency of S. putrefaciens treated by PAW was mainly determined by H2O2 concentration and pH value of PAW. This study provides a basis for the PAW potential applications in the disinfection of rotten food.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Sakiyama Y, Tomai T, Miyano M, Graves DB (2009) Appl Phys Lett 94(16):161501–161503

    Article  CAS  Google Scholar 

  2. Pavlovich MJ, Chang H-W, Sakiyama Y, Clark DS, Graves DB (2013) J Phys D Appl Phys 46(14):145202

    Article  CAS  Google Scholar 

  3. Foster JE, Sommers B, Gucker S (2015) Jpn J Appl Phys 54:01AF05

    Article  CAS  Google Scholar 

  4. Ma R, Wang G, Tian Y, Wang K, Zhang J, Fang J (2015) J Hazard Mater 300:643–651

    Article  CAS  PubMed  Google Scholar 

  5. Park DP, Davis K, Gilani S, Alonzo CA, Dobrynin D (2013) Curr Appl Phys 13(2):S19–S29

    Article  Google Scholar 

  6. Sarangapani C, Misra NN, Milosavljevic V, Bourke P, O’Regan F, Cullen PJ (2016) J Water Process Eng 9:225–232

    Article  Google Scholar 

  7. Yingyin X, Tian Y, Ma R, Liu Q, Zhang J (2016) Food Chem 197:436–444

    Article  CAS  Google Scholar 

  8. Boxhammer V, Morfill GE, Jokipii JR, Shimizu T, Klampfl T, Li Y-F, Koritzer J, Schlegel J, Zimmermann JL (2012) New J Phys 14:113042

    Article  CAS  Google Scholar 

  9. Ishaq M, Evans MM, Ostrikov KK (2014) Int J Cancer 134:1517–1528

    Article  CAS  PubMed  Google Scholar 

  10. Ölmez H, Kretzschmar U (2009) LWT Food Sci Technol 42(3):686–693

    Article  CAS  Google Scholar 

  11. Zhang Q, Liang Y, Feng H, Ma R, Tian Y (2013) Appl Phys Lett 102:203701

    Article  CAS  Google Scholar 

  12. Laroussi M (2005) Plasma Process Polym 2(5):391–400

    Article  CAS  Google Scholar 

  13. van Gils CAJ, Hofmann S, Boekema BKHL, Brandenburg R, Bruggeman PJ (2013) J Phys D Appl Phys 46(17):175203

    Article  CAS  Google Scholar 

  14. Lu X, Naidis GV, Laroussi M, Reuter S, Graves DB, Ostrikov K (2016) Phys Rep 630:1–84

    Article  CAS  Google Scholar 

  15. Duan J, Lu X, He G (2017) Phys Plasmas 24(7):291-84

    Article  CAS  Google Scholar 

  16. Shen J, Tian Y, Li Y, Ma R, Zhang Q, Zhang J, Fang J (2016) Sci Rep 6:28505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gram L, Ravn L, Rasch M, Bruhn JB, Christensen AB, Givskov M (2002) Int J Food Microbiol 78:79–97

    Article  PubMed  Google Scholar 

  18. Gram L, Dalgaard P (2002) Curr Opin Biotechnol 13(3):262–266

    Article  CAS  PubMed  Google Scholar 

  19. Dalgaard P (1995) Int J Food Microbiol 26(3):305–317

    Article  CAS  PubMed  Google Scholar 

  20. Zhang X, Liu D, Song Y, Sun Y, Yang S-z (2013) Phys Plasmas 20(5):157–957

    Google Scholar 

  21. Jing X, Weifeng H, Yi T, Weiqing L (2011) Sci Technol Food Ind 32(10):85–88

    Google Scholar 

  22. Li X, Yuhua W, Zhang L, Cao Y, Li Y, Li J, Zhu L, Gang W (2014) Anal Biochem 451(1):18

    Article  CAS  PubMed  Google Scholar 

  23. Eichwald O, Yousfi M, Hennad A, Benabdessadok MD (1997) J Appl Phys 82(10):4781–4794

    Article  CAS  Google Scholar 

  24. Jiankun L, Jiaping Z, Ronghua Z (2010) Ind Water Treat 30:13–15

    Google Scholar 

  25. Bader H, Hoigné J (1981) Water Res 15:449–456

    Article  CAS  Google Scholar 

  26. Bader H (2008) Ozone Sci Eng J Int Ozone Assoc 4(4):169–176

    Article  Google Scholar 

  27. Lukes P, Dolezalova E, Sisrova I, Clupek M (2014) Plasma Sources Sci Technol 23(1):015019

    Article  CAS  Google Scholar 

  28. Tang YZ, Xin Pei L, Laroussi M, Dobbs FC (2008) Plasma Process Polym 5(6):552–558

    Article  CAS  Google Scholar 

  29. Yanhui X, Quanyou G, Chaojun J (2016) Modern Food Sci Technol 32:156–199

    Google Scholar 

  30. Laroussi M (2009) IEEE Trans Plasma Sci 37(6):714–725

    Article  CAS  Google Scholar 

  31. Raffellini S, Schenk M, Guerrero S, Alzamora SM (2011) Food Control 22(6):920–932

    Article  CAS  Google Scholar 

  32. Sun P, Haiyan W, Bai N, Zhou H, Wang R, Feng H, Zhu W, Zhang J, Fang J (2012) Plasma Process Polym 9(2):157–164

    Article  CAS  Google Scholar 

  33. Oehmigen K, Hähnel M, Brandenburg R, Wilke Ch, Weltmann K-D, von Woedtke T (2010) Plasma Process Polym 7(3–4):250–257

    Article  CAS  Google Scholar 

  34. Herbert D, Elsworth R, Telling RC (1956) J Gen Microbiol 14(3):601–622

    Article  CAS  PubMed  Google Scholar 

  35. Marotta E, Schiorlin M, Ren X, Rea M, Paradisi C (2011) Plasma Process Polym 8:867–875

    Article  CAS  Google Scholar 

  36. Magureanu M, Dobrin D, Bradu C, Gherendi F, Mandache NB, Parvulescu VI (2016) Chemosphere 165:507–514

    Article  CAS  PubMed  Google Scholar 

  37. Laurita R, Barbieri D, Gherardi M, Colombo V, Lukes P (2015) Clin Plasma Med 3(2):53–61

    Article  Google Scholar 

  38. Régimbal J-M, Mozurkewich M (1997) J Phys Chem A 101(47):8822–8829

    Article  Google Scholar 

  39. Naïtali M, Kamgang-Youbi G, Herry J-M, Bellon-Fontaine M-N, Brisset J-L (2010) Appl Environ Microbiol 76(22):7662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Cords BR, Burnett SL, Hilgren J, Finley M, Magnuson J (2005) Sanitizers: halogens, surface-active agents, and peroxides. In: Davidson PM, Sofos JN, Branen AL (eds) Antimicrobials in food, 3rd edn. CRC Press, Florida

    Google Scholar 

  41. Raffellini S, Guerrero S, Alzamora SM (2008) Effect of hydrogen peroxide concentration and pH on inactivation kinetics of Escherichia coli. J Food Saf 28:514–533

    Article  CAS  Google Scholar 

  42. Pavlovich MJ, Chang H-W, Chang H-W, Sakiyama Y, Clark DS (2013) J Phys D Appl Phys 46:145202

    Article  CAS  Google Scholar 

  43. Montie TC, Kelly-Wintenberg K (2000) Reece Roth 28(1):41–50

    Google Scholar 

  44. Cadet J, Delatour T, Douki T, Gasparutto D, Pouget J-P, Ravanat J-L, Sauvaigo S (1999) Mutat Res 424(1–2):9–21

    Article  CAS  PubMed  Google Scholar 

  45. Lu H, Patil S, Keener KM, Cullen PJ, Cullen PJ (2013) J Appl Microbiol 116:784–794

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (NSFC-11475042, NSFC-11505025, NSFC-11705023).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongping Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qi, Z., Tian, E., Song, Y. et al. Inactivation of Shewanella putrefaciens by Plasma Activated Water. Plasma Chem Plasma Process 38, 1035–1050 (2018). https://doi.org/10.1007/s11090-018-9911-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-018-9911-5

Keywords

Navigation